• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究

赖宝春 戴瑞卿 吴振强 李丰 林德峰 王家瑞

赖宝春,戴瑞卿,吴振强,等. 辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究 [J]. 福建农业学报,2019,34(9):1073−1080. doi: 10.19303/j.issn.1008-0384.2019.09.012
引用本文: 赖宝春,戴瑞卿,吴振强,等. 辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究 [J]. 福建农业学报,2019,34(9):1073−1080. doi: 10.19303/j.issn.1008-0384.2019.09.012
LAI B C, DAI R Q, WU Z Q, et al. Bacterial Diversities in Rhizosphere Soils at Sites of Healthy and Fusarium Wilt Infected Chili Plants [J]. Fujian Journal of Agricultural Sciences,2019,34(9):1073−1080. doi: 10.19303/j.issn.1008-0384.2019.09.012
Citation: LAI B C, DAI R Q, WU Z Q, et al. Bacterial Diversities in Rhizosphere Soils at Sites of Healthy and Fusarium Wilt Infected Chili Plants [J]. Fujian Journal of Agricultural Sciences,2019,34(9):1073−1080. doi: 10.19303/j.issn.1008-0384.2019.09.012

辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究

doi: 10.19303/j.issn.1008-0384.2019.09.012
基金项目: 福建省科技计划项目(2017N0042)
详细信息
    作者简介:

    赖宝春(1979−),女,硕士,副研究员,研究方向:有益微生物筛选及植物病害生物防治(E-mail:lbc1999@163.com

  • 中图分类号: S 436

Bacterial Diversities in Rhizosphere Soils at Sites of Healthy and Fusarium Wilt Infected Chili Plants

  • 摘要:   目的  分析辣椒健康植株和患枯萎病植株根际土壤中细菌群落多样性,为辣椒枯萎病生态防控提供理论依据。  方法  采集漳州3个辣椒种植基地枯萎病典型患病样地的健康植株根际土壤(JK)和患病植株根际土壤(KW),对土样中的细菌群落进行基于Illumina Miseq测序平台的宏基因组高通量测序,明确健康辣椒植株与枯萎病患病植株根际土壤细菌多样性。  结果  患枯萎病植株根际土壤细菌的优质序列比健康植株少14 376条,OTUs少1 239个。在门水平上,健康植株和患病植株根际土壤微生物组成相似,但相对丰度存在差异。在属水平上,健康植株根际的鞘氨醇单孢菌属Sphingomonas相对丰度比患病植株增加了5.05百分点;而金属细菌属Metallibacterium相对丰度比患病植株减少了6.09百分点。部分物种丰度分析表明患病辣椒土壤根际中壤红杆菌属Solirubrobacter、小双孢菌属Microbispora、短链球孢囊菌属Catelliglobosispora和假双头斧形菌属Pseudolabrys等4个属的物种丰度低于健康辣椒。  结论  辣椒患病植株根际土壤中的细菌群落结构发生改变及物种丰度降低是辣椒枯萎病患病的重要特征,提示早期添加优势益生菌是防控辣椒枯萎病的新思路。
  • 图  1  健康辣椒和患病辣椒根际土壤细菌Shannon指数稀释曲线

    Figure  1.  Shannon index-based rarefaction curves on bacteria in rhizosphere soils at JK and KW

    图  2  健康辣椒和患病辣椒根际土壤细菌OTUs韦恩图

    Figure  2.  Venn diagram of bacteria OTUs in rhizosphere soils at JK and KW

    图  3  属分类水平辣椒健康和患病植株根际土壤细菌物种丰度比较

    Figure  3.  Abundance of bacteria species in rhizosphere soils at JK and KW

    表  1  辣椒健康植株和患病植株根际土壤细菌α多样性指数

    Table  1.   Alpha diversity indices of bacteria in rhizosphere soils at JK and KW

    样本名称
    Sample ID
    优质序列/条
    Seq num
    OTU/条
    OTU num
    香农指数
    Shannon index
    ACE 指数
    ACE index
    Chao 指数
    Chao1 index
    辛普森指数
    Simpson index
    覆盖率
    Coverage
    健康 JK45 1157 1646.484 898.994 623.746.9e-030.97
    枯萎 KW30 7395 9255.903 586.813 406.710.020.97
    P P-vaule0.0450.0050.0010.0030.0030.817
    显著性差异分析
    Analysis of significant differences
    *********
    注:*:差异显著;**:差异极显著。
    Note: *: exsting differences; **: exsting significant differences.
    下载: 导出CSV

    表  2  健康辣椒和患病辣椒根际土壤细菌的种系分类

    Table  2.   Phylogenetic classifications of bacteria in rhizosphere soils at JK and KW

    种系分类
    Classification

    Phylum

    Class

    Order

    Family

    Genus
    健康 JK265676165435
    枯萎 KW235476164427
    下载: 导出CSV

    表  3  健康辣椒和患病辣椒根际土壤细菌在不同分类阶元的细菌丰度

    Table  3.   Taxonomic compositions of bacterial communities in rhizosphere soils at JK and KW

    分类阶元
    Taxonomic category
    细菌丰度 Bacterial abundance/% 分类阶元
    Taxonomic category
    细菌丰度 Bacterial abundance/%
    健康 JK枯萎 KW 健康 JK枯萎 KW
    变形菌门 Proteobacteria 49.86 52.25 GP13属GP13 1.62 1.50
    α-变形菌纲 Alphaproteobacteria 28.66 18.58 GP14 属 GP14 0.05 0.62
    鞘氨醇单胞菌属 Sphingomonas 10.59 5.54 GP16 属 GP16 0.77 0.39
    产卟啉杆菌属 Porphyrobacter 0.87 0.46 未被分类的细菌纲 unclassified_Class 0.76 0.44
    德沃斯氏菌属 Devosia 0.57 0.54 未被分类的细菌属 unclassified_Genus 1.86 2.32
    粘着箭菌属 Ensifer 0.52 0.69 放线菌门 Actinobacteria 7.39 7.76
    乳酸杆菌属 Lacibacterium 1.77 0.76 放线菌纲 Actinobacteria 7.30 7.69
    γ-变形菌纲 Gammaproteobacteria 15.33 29.04 链霉菌属 Streptomyces 0.65 0.58
    下载: 导出CSV
    续上表
    分类阶元
    Taxonomic category
    细菌丰度 Bacterial abundance/% 分类阶元
    Taxonomic category
    细菌丰度 Bacterial abundance/%
    健康 JK枯萎 KW 健康 JK枯萎 KW
    产黄杆菌属 Rhodanobacter 3.72 7.28 JatrophihabitansJatrophihabitans 0.19 0.64
    金属细菌属 Metallibacterium 1.85 7.94 GaiellaGaiella 1.88 1.45
    藤黄单胞菌属 Luteimonas 1.28 0.75 未被分类的细菌纲 unclassified_Class 0.09 0.07
    戴氏菌属 Dyella 1.27 1.15 未被分类的细菌属 unclassified_Genus 4.67 5.09
    藤黄色杆菌属 Luteibacter 0.18 1.25 芽单胞菌门 Gemmatimonadetes 5.24 3.05
    独岛氏菌属 Dokdonella 0.67 0.15 芽单胞菌纲 Gemmatimonadetes 5.24 3.05
    PovalibacterPovalibacter 0.49 0.76 芽单胞菌属 Gemmatimonas 5.24 3.05
    假单胞菌属 Pseudomonas 1.61 1.63 未被分类的细菌纲 unclassified_Class 0 0
    β-变形菌纲 Betaproteobacteria 4.35 3.37 未被分类的细菌属 unclassified_Genus 0 0
    δ-变形菌纲 Deltaproteobacteria 1.44 1.19 拟杆菌门 Bacteroidetes 5.04 6.85
    未被分类的细菌纲 unclassified_Class 0.08 0.07 鞘脂杆菌纲 Sphingobacteriia 3.65 3.57
    未被分类的细菌属 unclassified_Genus 24.47 23.35 噬纤维菌纲 Cytophagia 0.91 0.90
    酸杆菌门 Acidobacteria 14.17 12.50 噬纤维菌属 Cytophaga 0.02 0.01
    酸杆菌纲 Acidobacteria 13.41 12.06 黄杆菌纲 Flavobacteriia 0.41 2.20
    GP1 属 GP1 2.21 1.41 黄杆菌属 Flavobacterium 0.09 0.04
    GP2 属 GP2 3.25 3.16 ArenibacterArenibacter 0.15 0.84
    GP3 属 GP3 1.40 0.73 未被分类的细菌纲 unclassified_Class 0.07 0.18
    Aridibacter 属 Aridibacter 0.69 0.57 未被分类的细菌属 unclassified_Genus 4.78 5.96
    GP6 属 GP6 2.32 1.80
    下载: 导出CSV
  • [1] 孙继民, 邹学校, 罗尊长, 等. 辣椒连作研究进展 [J]. 辣椒杂志, 2011, 9(2):1−7. doi: 10.3969/j.issn.1672-4542.2011.02.001

    SUN J M, ZOU X X, LUO Z C, et al. Research progress in continuous cropping of hot pepper [J]. Journal of China Capsicum, 2011, 9(2): 1−7.(in Chinese) doi: 10.3969/j.issn.1672-4542.2011.02.001
    [2] 黄素芳, 朱育菁, 肖荣凤, 等. 辣椒枯萎病原菌分离鉴定及其在植株体内的分布 [J]. 厦门大学学报(自然科学版), 2004, 43(S1):71−73.

    HUANG S F, ZHU Y J, XIAO R F, et al. Identification of capsicum wilt pathogen and its distribution inside the plants [J]. Journal of Xiamen University (Natural Science), 2004, 43(S1): 71−73.(in Chinese)
    [3] RIME D, NAZARET S, GOURBIERE F, et al. Comparison of sandy soils suppressive or conducive to ectoparasitic nematode damage on sugarcane [J]. Phytopathology, 2003, 93(11): 1437−1444.
    [4] PEREZ-PIQUERES A, EDEL-HERMANN V, ALABOUVETTE C, et al. Response of soil microbial communities to compost amendments [J]. Soil Biology and Biochemistry, 2006, 38(3): 460−470.
    [5] 邓晓, 李勤奋, 武春媛, 等. 健康香蕉(Musa paradisiaca)植株与枯萎病患病植株根区土壤细菌多样性的比较研究 [J]. 生态环境学报, 2015, 24(3):402−408.

    Deng X, Li Q F, Wu C Y, et al. Comparison of soil bacterial genetic diversity in root zone of banana (Musa paradisiaca) infected with fusarium wilt and non-infected plant [J]. Ecology and Environmental Sciences, 2015, 24(3): 402−408.(in Chinese)
    [6] LEON-KLOOSTERZIEL K M, VERHAGEN B W, KEURENTJES J J, et al. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle [J]. Plant Molecular Biology, 2005, 57(5): 731−748. doi: 10.1007/s11103-005-3097-y
    [7] REP M, DEKKER H L, VOSSEN J H, et al. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato [J]. Plant Physiology, 2002, 130(2): 904−917. doi: 10.1104/pp.007427
    [8] TJAMOS E C, TSITSIGIANNIS D I, TJAMOS S E, et al. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts [J]. European Journal of Plant Pathology, 2004, 110(1): 35−44. doi: 10.1023/B:EJPP.0000010132.91241.cb
    [9] 燕嗣皇, 陆德清, 杨雨环. 木霉防治辣椒枯萎病应用技术研究 [J]. 贵州农业科学, 1999, 27(5):1−4. doi: 10.3969/j.issn.1001-3601.1999.05.001

    YAN S H, LU D Q, YANG Y H. Effects of Trichodelma harzianum on control of hot pepper wilt [J]. Guizhou Agricultural Sciences, 1999, 27(5): 1−4.(in Chinese) doi: 10.3969/j.issn.1001-3601.1999.05.001
    [10] 杨卫娟, 刘长远, 马晓飞, 等. 辣椒枯萎病生防菌株的筛选与鉴定 [J]. 湖北农业科学, 2012, 51(9):1791−1795. doi: 10.3969/j.issn.0439-8114.2012.09.019

    YANG W J, LIU C Y, MA X F, et al. Sparation and inentification of microbe against Fusarium oxysporum [J]. Hubei Agricultural Sciences, 2012, 51(9): 1791−1795.(in Chinese) doi: 10.3969/j.issn.0439-8114.2012.09.019
    [11] 郑玉艳. 苦参对辣椒枯萎病的抑菌活性 [J]. 安徽农业科学, 2011, 39(23):14170−14171. doi: 10.3969/j.issn.0517-6611.2011.23.105

    ZHENG Y Y. Antifungal activity of sophora flavescens extracts against capsicum blight (Fusarium oxysporum) [J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14170−14171.(in Chinese) doi: 10.3969/j.issn.0517-6611.2011.23.105
    [12] 周涛, 罗路云, 陈红松, 等. 辣椒疫病罹病植株根际土壤细菌群落多样性分析 [J]. 南方农业学报, 2017, 48(6):1014−1018. doi: 10.3969/j.issn.2095-1191.2017.06.12

    ZHOU T, LUO L Y, CHEN H S, et al. Comparison on bacterial community diversity in rhizosphere soil of peppers with phytophthora blight [J]. Journal of Southern Agriculture, 2017, 48(6): 1014−1018.(in Chinese) doi: 10.3969/j.issn.2095-1191.2017.06.12
    [13] 蔡艳, 薛泉宏, 陈占全, 等. 青海省保护地辣椒根际土壤和根麦放线菌研究 [J]. 应用与环境生物学报, 2003, 9(1):92−96.

    CAI Y, XUE Q H, CHEN Z Q, et al. Actinomycetes in chilli rhizosphere soil and on surface of chilli root from protectorate in Qinghai, China [J]. Chin J Appl Environ Biol, 2003, 9(1): 92−96.(in Chinese)
    [14] 徐强, 程智慧, 孟焕文, 等. 玉米线辣椒套作对线辣椒根际、非根际土壤微生物、酶活性和土壤养分的影响 [J]. 干旱地区农业研究, 2007, 25(3):94−99. doi: 10.3321/j.issn:1000-7601.2007.03.020

    XU Q, CHENG Z H, MENG H W, et al. Effect of the capsicum and maize intercropping on soil microbe number, soil enzyme activity and soil nutrient content at the capsicum rhizosphere and non-rhizosphere zones [J]. Agricultural Research in the Arid Areas, 2007, 25(3): 94−99.(in Chinese) doi: 10.3321/j.issn:1000-7601.2007.03.020
    [15] 徐强, 刘艳君, 陶鸿. 间套作玉米对线辣椒根际土壤微生物生态特征的影响 [J]. 中国生态农业学报, 2013, 21(9):1078−1087.

    XU Q, LIU Y J, TAO H. Effects of relay intercropping maize on rhizosphere soil microbial ecological characteristics in capsicum fields [J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1078−1087.(in Chinese)
    [16] 赵玲, 欧阳立明, 陆小辰. 不同基质配方的有机肥对连作辣椒的生长及根际土壤微生物多样性的影响 [J]. 华中农业大学学报, 2013, 32(2):72−77. doi: 10.3969/j.issn.1000-2421.2013.02.013

    ZHAO L, OU-YANG L M, LU X C. Effects of different organic fertilizers on rhizospheric microbial diversity and growth of peppers in continuous cropping soil [J]. Journal of Huazhong Agricultural University, 2013, 32(2): 72−77.(in Chinese) doi: 10.3969/j.issn.1000-2421.2013.02.013
    [17] 张学利, 杨树军, 张百习, 等. 不同林龄樟子松根际与非根际土壤的对比 [J]. 福建林学院学报, 2005, 25(1):80−84. doi: 10.3969/j.issn.1001-389X.2005.01.019

    ZHANG X L, YANG S J, ZHANG B X, et al. Comparative research on rhizosphere soil and non-rhizosphere soil properties in different stand age of Pinus sylvestris var. mongolica sand-fixation forest [J]. Journal of Fujian College of Forestry, 2005, 25(1): 80−84.(in Chinese) doi: 10.3969/j.issn.1001-389X.2005.01.019
    [18] ROSENZWEIG N, TIEDJE J M, QUENSEN J F, et al. Microbial communities associated with potato common scabsuppressive soil determined by pyrosequencing analyses [J]. Plant Disease, 2012, 96(5): 718−725. doi: 10.1094/PDIS-07-11-0571
    [19] FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103
    [20] FIERER N, MCCAIN C M, MEIR P, et al. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 2011, 92(4): 797−804. doi: 10.1890/10-1170.1
    [21] SHEN C C, XIONG J B, ZHANG H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biology & Biochemistry, 2013, 57: 204−211.
    [22] WANG J J, SOININEN J, ZHANG Y, et al. Contrasting patterns in elevational diversity between microorganisms and macroorganisms [J]. Journal of Biogeography, 2011, 38(3): 595−603. doi: 10.1111/j.1365-2699.2010.02423.x
    [23] LI H, SU J Q, YANG X R, et al. Distinct rhizosphere effect on active and total bacterial communities in paddy soils [J]. Science of the Total Environment, 2019, 649: 422−430.
    [24] FAN D, SCHWINGHAMER T, SMITH D L. Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada [J]. Systematic and Applied Microbiology, 2018, 41(6):629-640.
    [25] ANGELO-PICARD C, FAURE D, PENOT I, et al. Diversity of N-acyl homoserine lactone-producing and degrading bacteria in soil and tobacco rhizosphere [J]. Environmental Microbiology, 2005, 7(11): 1796−1808. doi: 10.1111/j.1462-2920.2005.00886.x
    [26] 靳晓扬, 侯鹏飞, 张肖晗, 等. 细菌信号分子N-酰基高丝氨酸内酯调控植物抗病反应的研究进展 [J]. 生物技术通报, 2016, 32(11):47−51.

    JIN X Y, HOU P F, ZHANG X H, et al. Advances on regulation of plant disease resistance by N-acyl-homoserine lactones of a bacterial signal molecule [J]. Biotechnology Bulletin, 2016, 32(11): 47−51.(in Chinese)
    [27] 胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展 [J]. 应用与环境生物学, 2007, 13(3):431−437. doi: 10.3321/j.issn:1006-687X.2007.03.030

    HU J, HE X H, LI D P, et al. Progress in Research of Sphingomonas [J]. Chin J Appl Environ Biol, 2007, 13(3): 431−437.(in Chinese) doi: 10.3321/j.issn:1006-687X.2007.03.030
    [28] VASILEIADIS S, PUGLISI E, PAPADOPOULOU E S, et al. Blame it on the metabolite: 3,5-dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms [J]. Applied and Environmental Microbiology, 2018, 84(22): 1−16.
    [29] GIRAO M, RIBEIRO I, RIBEIRO T, et al. Actinobacteria isolated from laminaria ochroleuca: A Source of new bioactive compounds [J]. Front Microbiol, 2019, 10: 683. doi: 10.3389/fmicb.2019.00683
    [30] MA M C, ZHOU J, ONGENA M, et al. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of chinese mollisols [J]. AMB Express, 2018, 8(1): 20−31. doi: 10.1186/s13568-018-0549-8
    [31] NGUYEN N L, TRAN B T, PHAM H S, et al. Illumina miseq-based sequencing analysis of bacterial community in vietnamese ginseng cultivated soil in the Ngoc linh mountain, vietnam [J]. TiEu Ban Tai Nguyen Sinh Vat, 2016: 1274−1282.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  482
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-08-15
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回