• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻OsBI-1L-8基因启动子功能分析

陈睿 于法科 李清贤 单贞

陈睿,于法科,李清贤,等. 水稻 OsBI-1L-8基因启动子功能分析 [J]. 福建农业学报,2020,35(5):474−479 doi: 10.19303/j.issn.1008-0384.2020.05.002
引用本文: 陈睿,于法科,李清贤,等. 水稻 OsBI-1L-8 基因启动子功能分析 [J]. 福建农业学报,2020,35(5):474−479 doi: 10.19303/j.issn.1008-0384.2020.05.002
CHEN R, YU F K, LI Q X, et al. Characterization of OsBI-1L-8 Promoter in Oryza sativa L . [J]. Fujian Journal of Agricultural Sciences,2020,35(5):474−479 doi: 10.19303/j.issn.1008-0384.2020.05.002
Citation: CHEN R, YU F K, LI Q X, et al. Characterization of OsBI-1L-8 Promoter in Oryza sativa L . [J]. Fujian Journal of Agricultural Sciences,2020,35(5):474−479 doi: 10.19303/j.issn.1008-0384.2020.05.002

水稻OsBI-1L-8基因启动子功能分析

doi: 10.19303/j.issn.1008-0384.2020.05.002
基金项目: 福建省科技计划公益类专项(2016R1018-8);福建省自然科学基金项目(2017J01055)
详细信息
    作者简介:

    陈睿(1980−),女,硕士,副研究员,研究方向:水稻遗传育种研究(E-mail:candy_chenrui@163.com

  • 中图分类号: S 511

Characterization of OsBI-1L-8 Promoter in Oryza sativa L.

  • 摘要:   目的  分析水稻OsBI-1L-8基因启动子的结构与功能,解析OsBI-1L-8基因的表达特性及生物学功能,进一步了解OsBI-1L家族在水稻生命进程中的作用机理。  方法  利用BDGP、Softberry及Promoter 2.0预测分析水稻OsBI-1L-8启动子大小,以日本晴基因DNA为模板扩增pOsBI-1L-8,PlantCARE分析序列中顺序调控元件。构建pOsBI-1L-8::GUS载体,导入水稻,组织化学染色法检测pOsBI-1L-8在水稻中的时空表达特征。  结果  通过预测分析并克隆pOsBI-1L-8长度为1 258 bp,该区域含有光信号、缺氧胁迫应答及激素调节等顺式作用元件。pOsBI-1L-8驱动的GUS报告基因仅表达于水稻抽穗期的茎结合部位、根茎过渡区和雄蕊。  结论  pOsBI-1L-8为组织特异型启动子,推测OsBI-1L-8可能在水稻生长及雄蕊发育中起重要作用。
  • 图  1  表达载体pOsBI-1L-8::GUS示意图

    Figure  1.  Schematic of pOsBI-1L-8::GUS

    图  2  pOsBI-1L-8启动子扩增片段

    注:Marker: DL5000;1~4:pOsBI-1L-8 片段。

    Figure  2.  Electrophoretogram of amplified fragment of pOsBI-1L-8 promoter

    Note: Marker:DL5000; 1–4: pOsBI-1L-8 fragment.

    图  3  pOsBI-1L-8::GUS载体酶切验证

    注:Marker为λ-EcoT14 I digest DNA Marker,1为 Pst I/EcoR I酶切,片段大小为8 917 bp、3 349 bp;2为Pst I/Nco I酶切,片段大小为11 035 bp、1 265 bp;3为Hind III酶切,片段大小为11 734 bp、566 bp。

    Figure  3.  Enzymes digestion verification of pOsBI-1L-8::GUS vector

    Note: Marker: λ-EcoT14 I digest DNA Marker; 1: Pst I/EcoR I enzyme-digested products, with fragment lengths of 8 917 bp and 3 349 bp; 2: Pst I/Nco I enzyme-digested products, with fragment lengths of 11 035 bp and 1 265 bp; 3: Hind III enzyme-digested products, with fragment lengths of 11 734 bp and 566 bp.

    图  4  转基因苗PCR检测

    注:Marker为DL5000,1~10为转基因阳性株,11为转基因对照日本晴,12为质粒pOsBI-1L-8::GUS。

    Figure  4.  PCR analysis on genome DNA of transgenic rice plant

    Note: Marker: DL5000; 1–10: the transgene positive line; 11: Nipponbare; 12: pOsBI-1L-8::GUS.

    图  5  转基因植株GUS组织化学染色

    注:a为根、b为茎、c为叶、d为叶夹角、e为内外稃、f为种子、g为根茎结合部、h为茎结合部、i为花穗、j为小花内部结构;1为阴性植株染色;2为转基因植株染色。

    Figure  5.  GUS histochemical staining of transgenic rice plant

    Note:a: roots; b: stems; c: leaves; d: leaf angle; e: lemma and palea; f: seeds; g: root-stem junctions; h: stem-stem junctions; i: flower spikes; j: inner structure of floret; 1: specimens from plants of negative result; 2: specimens from transgenic plants.

    表  1  OsBI-1L-8基因启动子序列顺式作用元件

    Table  1.   The cis-acting elements in promoter sequence of OsBI-1L-8

    名称
    Name
    序列
    Sequence
    位置
    Position/bp
    数量
    Amount
    功能
    Function
    TATA-box ATATAA 960 1 主要顺式调控元件
    Common cis-acting elements
    CAAT-box CAAT/CCAAT/CAAAT 9, 71, 111, 198, 268, 354, 877,
    1 026, 1 040, 1 121, 1 122
    11 主要顺式调控元件
    Common cis-acting elements
    ATCT-motif AATCTAATCC 199 1 光响应元件
    Light response element
    G-box TACGTG 670 1 光响应元件
    Light response element
    GC-motif CCCCCG 364 1 缺氧胁迫响应元件
    Anaerobic stress response element
    CGTCA-motif CGTCA 1 158 1 茉莉酸响应元件
    MeJA response element
    TGACG-motif TGACG 136, 490 2 茉莉酸响应元件
    MeJA response element
    ABRE ACGTG/TACGTGTC/ACGTG 297, 670, 671 3 脱落酸响应元件
    abscisic acid response element
    ABRE3a TACGTG 670 1 功能未知元件
    Function unknown component
    DRE core GCCGAC 369 1 功能未知元件
    Function unknown component
    Myb TAACTG 778 1 功能未知元件
    Function unknown component
    TCA TCATCTTCAT 1 101, 1 107 2 功能未知元件
    Function unknown component
    AT~ABRE TACGTGTC 670 1 功能未知元件
    Function unknown component
    Unnamed_4 CTCC 618, 621, 681, 758, 1 094, 1 097, 1 117,
    1 167, 1 170,1 173, 1 176, 1 182, 1 188
    13 功能未知元件
    Function unknown component
    WRE3 CCACCT 479 1 功能未知元件
    Function unknown component
    as-1 TGACG 136, 490 2 功能未知元件
    Function unknown component
    下载: 导出CSV
  • [1] WALTER L, MARYNEN P, SZPIRER J, et al. Identification of a novel conserved human gene, TEGT [J]. Genomics, 1995, 28(2): 301−304. doi: 10.1006/geno.1995.1145
    [2] WATANABE N, LAM E. Arabidopsis Bax inhibitor-1: a rheostat for ER stress-induced programmed cell death [J]. Plant Signaling & Behavior, 2008, 3(8): 564−566.
    [3] WATANABE N, LAM E. Bax inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants [J]. International Journal of Molecular Sciences, 2009, 10(7): 3149−3167. doi: 10.3390/ijms10073149
    [4] BULTYNCK G, KIVILUOTO S, HENKE N, et al. The C Terminus of bax inhibitor-1 forms a Ca2+-permeable channel pore [J]. Journal of Biological Chemistry, 2012, 287(4): 2544−2557. doi: 10.1074/jbc.M111.275354
    [5] LEBEAUPIN C, BLANC M, VALLÉE D, et al. BAX inhibitor-1: between stress and survival [J]. The FEBS Journal, 2020, 287(9): 1722−1736. doi: 10.1111/febs.15179
    [6] MATSUMURA H, NIRASAWA S, KIBA A, et al. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells [J]. The Plant Journal, 2003, 33(3): 425−434. doi: 10.1046/j.1365-313X.2003.01639.x
    [7] ISHIKAWA T, TAKAHARA K, HIRABAYASHI T, et al. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor bax inhibitor-1 [J]. Plant and Cell Physiology, 2010, 51(1): 9−20. doi: 10.1093/pcp/pcp162
    [8] XU Q L, REED J C. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast [J]. Molecular Cell, 1998, 1(3): 337−346. doi: 10.1016/S1097-2765(00)80034-9
    [9] SANCHEZ P, DE TORRES ZABALA M, GRANT M. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge [J]. The Plant Journal, 2000, 21(4): 393−399. doi: 10.1046/j.1365-313x.2000.00690.x
    [10] NAGANO M, ISHIKAWA T, OGAWA Y, et al. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes [J]. Planta, 2014, 240(1): 77−89. doi: 10.1007/s00425-014-2065-7
    [11] NAGANO M, KAKUTA C, FUKAO Y, et al. Arabidopsis Bax inhibitor-1 interacts with enzymes related to very-long-chain fatty acid synthesis [J]. Journal of Plant Research, 2019, 132(1): 131−143. doi: 10.1007/s10265-018-01081-8
    [12] HUCKELHOVEN R, DECHERT C, KOGEL K H. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9): 5555−5560. doi: 10.1073/pnas.0931464100
    [13] 郑玲, 张玉芹, 张传云, 等. 棉花GhBI-1基因全长cDNA的克隆与表达分析 [J]. 核农学报, 2011, 25(1):20−25, 42. doi: 10.11869/hnxb.2011.01.0020

    ZHENG L, ZHANG Y Q, ZHANG C Y, et al. Full-length cDNA cloning and analysis of GHBI-1 from upland cotton (Gossypium hirsutum L.) [J]. Journal of Nuclear Agricultural Sciences, 2011, 25(1): 20−25, 42.(in Chinese) doi: 10.11869/hnxb.2011.01.0020
    [14] 张景霞, 霍雪寒, 王芙蓉, 等. 棉花Bax inhibitor-1影响内质网胁迫介导的细胞死亡的研究 [J]. 山东农业科学, 2018, 50(5):1−6.

    ZHANG J X, HUO X H, WANG F R, et al. Overexpression of cotton Bax inhibitor-1 affects cell death mediated by endoplasmic Reticulum stress in Arabidopsis [J]. Shandong Agricultural Sciences, 2018, 50(5): 1−6.(in Chinese)
    [15] LU P P, YU T F, ZHENG W J, et al. The wheat Bax inhibitor-1 protein interacts with an aquaporin TaPIP1 and enhances disease resistance in Arabidopsis [J]. Frontiers in Plant Science, 2018, 9: 20. doi: 10.3389/fpls.2018.00020
    [16] 谢萌, 朱文华, 林宇恒, 等. 烟草Bax inhibitor-1基因植物沉默表达载体的构建及对农杆菌的转化 [J]. 东北农业大学学报, 2010, 41(1):67−72. doi: 10.3969/j.issn.1005-9369.2010.01.014

    XIE M, ZHU W H, LIN Y H, et al. Construction of tobacco Bax inhibitor-1 ihpRNA gene silencing vector and its transformation into Agrobacterium tumefaciens EHA105 [J]. Journal of Northeast Agricultural University, 2010, 41(1): 67−72.(in Chinese) doi: 10.3969/j.issn.1005-9369.2010.01.014
    [17] 苏军, 胡昌泉, 翟红利, 等. 农杆菌介导籼稻明恢86高效稳定转化体系的建立 [J]. 福建农业学报, 2003, 18(4):209−213. doi: 10.3969/j.issn.1008-0384.2003.04.003

    SU J, HU C Q, ZHAI H L, et al. Establishment of a highly efficient and stable tranforming system mediated by Agrobacterium tumefacien in indica rice [J]. Fujian Journal of Agricultural Sciences, 2003, 18(4): 209−213.(in Chinese) doi: 10.3969/j.issn.1008-0384.2003.04.003
    [18] 霍雪寒, 张景霞, 张传云, 等. 棉花Bax inhibitor-1基因启动子的克隆及初步验证 [J]. 核农学报, 2013, 27(3):279−285. doi: 10.11869/hnxb.2013.03.0279

    HUO X H, ZHANG J X, ZHANG C Y, et al. Cloning and test of Bax inhibitor-1 gene promoters from upland cotton(Gossypium hirsutum L.) [J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 279−285.(in Chinese) doi: 10.11869/hnxb.2013.03.0279
    [19] 马倩, 马宝月, 穆波, 等. 植物基因启动子的克隆及分析的研究进展 [J]. 中国农业文摘-农业工程, 2018(3):23−29. doi: 10.3969/j.issn.1002-5103.2018.03.005

    MA Q, MA B Y, MU B, et al. Research progress on cloning and analysis of plant gene promoter [J]. Agricultural Science and Engineering in China, 2018(3): 23−29.(in Chinese) doi: 10.3969/j.issn.1002-5103.2018.03.005
    [20] WANG M L, YAN W, PENG X Q, et al. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice [J]. Journal of Integrative Plant Biology, 2020, 22: jipb.12912.
    [21] BOLDUC N, OUELLET M, PITRE F, et al. Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells [J]. Planta, 2003, 216(3): 377−386. doi: 10.1007/s00425-002-0879-1
    [22] KAWANABE T, ARⅡZUMI T, KAWAI-YAMADA M, et al. Abolition of the tapetum suicide program ruins microsporogenesis [J]. Plant and Cell Physiology, 2006, 47(6): 784−787. doi: 10.1093/pcp/pcj039
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1741
  • HTML全文浏览量:  682
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 修回日期:  2020-04-23
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回