• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响

袁银龙 孙杰 徐如玉 左明雪 顾文杰 卢钰升 解开治 徐培智

袁银龙,孙杰,徐如玉,等. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响 [J]. 福建农业学报,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009
引用本文: 袁银龙,孙杰,徐如玉,等. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响 [J]. 福建农业学报,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009
YUAN Y L, SUN J, XU R Y, et al. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field [J]. Fujian Journal of Agricultural Sciences,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009
Citation: YUAN Y L, SUN J, XU R Y, et al. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field [J]. Fujian Journal of Agricultural Sciences,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009

丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响

doi: 10.19303/j.issn.1008-0384.2020.07.009
基金项目: 国家重点研发计划项目(2018YFD0200706);广东省科技计划项目(2016A030313776、2017B020233002、2017B020203002);广州市珠江科技新星专项资助项目(201710010182);广东省农业科学院十三五学科团队建设项目(201801XX)
详细信息
    作者简介:

    袁银龙(1994−),男,硕士,主要从事土壤碳循环方面研究(E-mail:903648498@qq.com

    通讯作者:

    解开治(1977−),男,博士,研究员,主要从事植物营养研究(E-mail:xiekzgsau@163.com

    徐培智(1963−),男,研究员,主要从事植物营养与高效施肥研究(E-mail:pzxu007@163.com

  • 中图分类号: S144.9;Q 939.96

Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field

  • 摘要:   目的  研究丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)与有机肥配施对甜玉米根际土壤微生物群落碳循环功能基因的影响,揭示AMF与有机肥配施对甜玉米根际土壤碳循环的生物学机制,为AMF配施有机肥在农田土壤碳转化方面的应用提供理论参考。  方法  设置7个处理:(1)CK,不施氮肥;(2)OF,优化施肥;(3)ORF10,有机肥替代10%化学氮肥;(4)ORF20,有机肥替代20%化学氮肥;(5)ORF10+AMF,有机肥替代10%化学氮肥+变形球囊霉菌(Glomus versiforme);(6)ORF20+AMF,有机肥替代20%化学氮肥+变形球囊霉菌(Glomus versiforme);(7)CK+AMF,不施氮肥+变形球囊霉菌(Glomus versiforme);每个处理3个重复。利用基因芯片(GeoChip5.0)技术,对7个处理甜玉米根际土壤关键碳循环功能基因进行分析。  结果  AMF与有机肥配施对甜玉米产量具有显著的增产效果,在CK、ORF10、ORF20施肥水平下增施变形球囊霉菌后,甜玉米的鲜苞产量分别较不增施变形球囊霉的处理提升32.6%、8.6%、8.9%。测序结果显示,AMF与有机肥配施显著改变了甜玉米根际土壤微生物碳循环功能基因的结构特征。在关键碳循环基因水平上,与碳循环有关的碳分解、碳固定和甲烷代谢3个过程总体上表现为CK+AMF与ORF20+AMF两个处理的基因相对信号强度均高于其他处理。关键碳循环功能基因与环境因子的冗余分析显示,土壤呼吸、全氮、pH、全钾、有机质、速效磷、全磷等土壤养分是影响碳循环功能基因的主要因素。  结论  AMF与有机肥配施能显著提高甜玉米的鲜苞产量,同时也改变了甜玉米根际土壤碳循环功能基因的结构特征,不同程度提高了碳分解、碳固定、甲烷代谢等过程的功能基因的相对信号强度。
  • 图  1  碳循环功能基因结构特征

    Figure  1.  Structural characteristics of C-cycle genes

    图  2  不同处理下碳降解的关键功能基因标准化相对信号强度

    Figure  2.  Normalized relative signal strength of key functional genes relating to C-degradation under different treatments

    图  3  不同处理下碳固定与甲烷代谢的关键功能基因标准化相对信号强度

    Figure  3.  Normalized relative signal strength of key functional genes relating to C-fixation and

    图  4  碳循环基因与理化性质的冗余分析

    注:TN,总氮;AP,有效磷;TP,全磷;OM,有机质;TK,总钾;AK,速效钾;SR,土壤呼吸。

    Figure  4.  Redundant analysis on carbon cycle genes and physicochemical properties

    Note: TN- total nitrogen; AP- available phosphorus; TP- total phosphorus; OM- organic matter; TK- total potassium; AK- available potassium; SR- soil respiration.

    表  1  不同处理施肥方案

    Table  1.   Fertilization treatments

    处理 Treatment施肥用量 Fertilization dosage/(kg·hm-2
    NP2O5K2O有机肥 Organic fertilizer
    CK,不施氮肥0150225
    OF,优化施肥330150225
    ORF10,有机肥氮替代10%化学氮肥2971502251650
    ORF20,有机肥氮替代20%化学氮肥2641502253300
    ORF10+AMF,有机肥氮替代10%化学氮肥+增施变形球囊霉菌(G. versiforme2971502251650
    ORF20+AMF,有机肥氮替代20%化学氮肥+增施变形球囊霉菌(G. versiforme2641502253300
    CK+AMF,不施氮肥+增施变形球囊霉菌(G. versiforme0150225
    下载: 导出CSV

    表  2  不同施肥下甜玉米产量与理化性质分析

    Table  2.   Yield and physicochemical properties of sweet corn under different treatments

    处理 Treatment产量 Yield/(kg·hm−2有机质含量 Organic content/(g·kg−1土壤呼吸 Soil respiration/(kg·hm−2·h−1
    CK7288.00±288.79 d21.98±0.15 b38.58±2.60 c
    OF14246.20±469.13 b22.06±0.60 b54.64±5.68 b
    ORF1014651.00±275.12 b23.16±1.69 b40.25±0.96 c
    ORF2014925.00±855.37 b24.03±2.06 ab47.76±4.17 bc
    ORF10+AMF15911.00±325.41 a22.88±1.21 b53.39±4.26 b
    ORF20+AMF16250.00±630.72 a25.97±2.57 a74.66±10.02 a
    CK+AMF9663.00±764.32 c21.86±0.19 b45.05±8.42 bc
    显著性SignificancePP Value
    AMF<0.001<0.476<0.001
    有机无机配施(OCF)<0.001<0.018<0.001
    AMF×ORF<0.191<0.380<0.029
    注:同列数据后不同小写字母表示处理间差异显著性(P<0.05)。数据为均值 ± 标准误。
    Note: Data with different lowercase letters on the same column indicate significant differences at P<0.05. Data presented as mean±standard error, n=3.
    下载: 导出CSV
  • [1] BARDGETT R D, FREEMAN C, OSTLE N J. Microbial contributions to climate change through carbon cycle feedbacks [J]. The ISME Journal, 2008, 2(8): 805−814. doi: 10.1038/ismej.2008.58
    [2] ZHOU J Z, XUE K, XIE J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming [J]. Nature Climate Change, 2012, 2(2): 106−110. doi: 10.1038/nclimate1331
    [3] TRIVEDI P, ANDERSON I C, SINGH B K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction [J]. Trends in Microbiology, 2013, 21(12): 641−651. doi: 10.1016/j.tim.2013.09.005
    [4] 郑慧芬, 曾玉荣, 叶菁, 等. 农田土壤碳转化微生物及其功能的研究进展 [J]. 亚热带农业研究, 2018, 14(3):209−216.

    ZHENG H F, ZENG Y R, YE J, et al. Research advance on soil carbon conversion microorganisms and their functions in farmland ecosystems [J]. Subtropical Agriculture Research, 2018, 14(3): 209−216.(in Chinese)
    [5] 王立, 贾文奇, 马放, 等. 菌根技术在环境修复领域中的应用及展望 [J]. 生态环境学报, 2010, 19(2):487−493. doi: 10.3969/j.issn.1674-5906.2010.02.043

    WANG L, JIA W Q, MA F, et al. Perspective of mycorrhizal technology application for environmental remediation [J]. Ecology and Environmental Sciences, 2010, 19(2): 487−493.(in Chinese) doi: 10.3969/j.issn.1674-5906.2010.02.043
    [6] 陆大雷, 刘小兵, 赵久然, 等. 甜玉米氮素吸收利用的基因型差异 [J]. 植物营养与肥料学报, 2008, 14(2):258−263. doi: 10.3321/j.issn:1008-505X.2008.02.009

    LU D L, LIU X B, ZHAO J R, et al. Genotypic differences in nitrogen uptake and utilization of sweet maize [J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 258−263.(in Chinese) doi: 10.3321/j.issn:1008-505X.2008.02.009
    [7] 张白鸽, 李强, 陈琼贤, 等. 广东甜玉米施肥指标体系研究 [J]. 广东农业科学, 2013, 40(20):67−70. doi: 10.3969/j.issn.1004-874X.2013.20.022

    ZHANG B G, LI Q, CHEN Q X, et al. Research on index system for sweet maize fertilization in Guangdong [J]. Guangdong Agricultural Sciences, 2013, 40(20): 67−70.(in Chinese) doi: 10.3969/j.issn.1004-874X.2013.20.022
    [8] 田善义, 王明伟, 成艳红, 等. 化肥和有机肥长期施用对红壤酶活性的影响 [J]. 生态学报, 2017, 37(15):4963−4972.

    TIAN S Y, WANG M W, CHENG Y H, et al. Long-term effects of chemical and organic amendments on red soil enzyme activities [J]. Acta Ecologica Sinica, 2017, 37(15): 4963−4972.(in Chinese)
    [9] 郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展 [J]. 微生物学通报, 2013, 40(1):158−171.

    GUO L D, TIAN C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen [J]. Microbiology China, 2013, 40(1): 158−171.(in Chinese)
    [10] 金海如, 蒋湘艳, 夏婷婷. 不同有机物料及其菌根化对甜玉米产量与品质的协同影响 [J]. 中国土壤与肥料, 2019(6):196−203.

    JIN H R, JIANG X Y, XIA T T. Synergistic effect of different organic matters and mycorrhizal fungi on biomass and quality of sweet maize [J]. Soil and Fertilizer Sciences in China, 2019(6): 196−203.(in Chinese)
    [11] 徐如玉, 左明雪, 袁银龙, 等. 增施摩西管柄囊霉对甜玉米氮肥增效及土壤丛枝菌根真菌多样性的影响 [J]. 福建农业学报, 2020, 35(4):379−391.

    XU R Y, ZUO M X, YUAN Y L, et al. Effects of Funneliformis mosseae application on nitrogen utilization by sweet corn and AM fungi diversity in soil [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 379−391.(in Chinese)
    [12] 徐丽娇, 姜雪莲, 郝志鹏, 等. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性 [J]. 植物生态学报, 2017, 41(8):815−825. doi: 10.17521/cjpe.2017.0018

    XU L J, JIANG X L, HAO Z P, et al. Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism [J]. Chinese Journal of Plant Ecology, 2017, 41(8): 815−825.(in Chinese) doi: 10.17521/cjpe.2017.0018
    [13] 张弘. 相同碳氮比有机物料和生物炭对烤烟品质及土壤碳氮代谢的影响 [D]. 郑州: 河南农业大学, 2017.

    ZHANG H. Effect of the same C/N ratio organic material and boichar on flue-cured tobacco quality and soil carbon nitrogen metabolism [D]. Zhengzhou: Henan Agricultural University, 2017.(in Chinese)
    [14] 梁晋刚, 辛龙涛, 栾颖, 等. 转cry1Ie基因抗虫玉米对根际微生物群落碳代谢的影响 [J]. 中国农业科技导报, 2019, 21(2):104−110.

    LIANG J G, XIN L T, LUAN Y, et al. Effect of Cry1Ie bt maize on carbon source metabolism of rhizosphere microorganisms [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 104−110.(in Chinese)
    [15] 路花, 张美俊, 冯美臣, 等. 氮肥减半配施有机肥对燕麦田土壤微生物群落功能多样性的影响 [J]. 生态学杂志, 2019, 38(12):3660−3666.

    LU H, ZHANG M J, FENG M C, et al. Effects of half-reduced nitrogen fertilization combined with organic fertilizer on functional diversity of soil microbial communities in oat field [J]. Chinese Journal of Ecology, 2019, 38(12): 3660−3666.(in Chinese)
    [16] 孙丹萍. 丛枝菌根真菌扩繁技术研究 [J]. 河南林业科技, 2004, 24(2):12−13, 15. doi: 10.3969/j.issn.1003-2630.2004.02.006

    SUN D P. Study on the propagation technology of arbuscular mycorrhizal fungi [J]. Journal of Henan Forestry Science and Technology, 2004, 24(2): 12−13, 15.(in Chinese) doi: 10.3969/j.issn.1003-2630.2004.02.006
    [17] 毕银丽, 孙欢, 郭楠, 等. 不同基质和菌种组合对丛枝菌根真菌扩繁效果的影响 [J]. 应用与环境生物学报, 2017, 23(4):616−621.

    BI Y L, SUN H, GUO N, et al. Propagate-effects of different substrates and strain combinations on arbuscular mycorrhizal fungi [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 616−621.(in Chinese)
    [18] ZHAO Y P, LIN S, CHU L X, et al. Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla [J]. Scientific Reports, 2016, 6: 26175. doi: 10.1038/srep26175
    [19] 鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 2000.
    [20] 鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2000.
    [21] STRALIS-PAVESE N, ABELL G C J, SESSITSCH A, et al. Analysis of methanotroph community composition using a pmoA -based microbial diagnostic microarray [J]. Nature Protocols, 2011, 6(5): 609. doi: 10.1038/nprot.2010.191
    [22] 吕鹏, 张吉旺, 刘伟, 等. 施氮量对超高产夏玉米产量及氮素吸收利用的影响 [J]. 植物营养与肥料学报, 2011, 17(5):852−860.

    LÜ P, ZHANG J W, LIU W, et al. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions [J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 852−860.(in Chinese)
    [23] 段媛君, 王百田. 不同肥料与AM真菌配施对沙打旺品质的影响 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):118−124.

    DUAN Y J, WANG B T. Effect of different fertilizers and AM fungi on quality of Astragalus adsurgens Pall [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5): 118−124.(in Chinese)
    [24] 周世品. 有机无机肥配施和丛枝菌根化育苗对西瓜产量品质的影响 [D]. 南京: 南京农业大学, 2017.

    ZHOU S P. Effects of combined organic and inorganic fertilizer and arbuscular mycorrhizal colonization on watermelon yield and quality [D]. Nanjing: Nanjing Agricultural University, 2017.(in Chinese)
    [25] 张前兵. 干旱区不同管理措施下绿洲棉田土壤呼吸及碳平衡研究 [D]. 石河子: 石河子大学, 2013.

    ZHANG Q B. Studies on soil respiration and carbon balance under different management practices in cotton field of oasis in arid region[D]. Shihezi: Shihezi University, 2013.(in Chinese)
    [26] 贺美,王迎春,王立刚,等.不同耕作措施对黑土碳排放和活性碳库的影响[J].土壤通报,2016, 47(5):1195-1202.

    HE M, WANG Y C, WANG L G, et al. Effect of different tillage managements oncarbon dioxide emission and content of activated carbon in black soil [J]. Chinese Journal of Soil Science, 2016, 47(5): 1195-1202.(in Chinese)
    [27] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754−13759. doi: 10.1073/pnas.1005874107
    [28] CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 [J]. Science, 2012, 337(6098): 1084−1087. doi: 10.1126/science.1224304
    [29] RUI J P, LI J B, WANG S P, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet plateau [J]. Applied and Environmental Microbiology, 2015, 81(17): 6070−6077. doi: 10.1128/AEM.00557-15
    [30] TABITA F R. Microbial ribulose1,5-bisphosphate carboxylase/oxygenase: A different perspective [J]. Photosynthesis Research, 1999, 60(1): 1−28. doi: 10.1023/A:1006211417981
    [31] SIEGENTHALER U, SARMIENTO J L. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993, 365(6442): 119−125. doi: 10.1038/365119a0
    [32] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展 [J]. 微生物学通报, 2017, 44(7):1676−1689.

    LIU Y Y, WANG S, LI S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1676−1689.(in Chinese)
    [33] GIFFORD R M. The global carbon cycle: A viewpoint on the missing sink [J]. Functional Plant Biology, 1994, 21(1): 1. doi: 10.1071/PP9940001
    [34] VAN GROENIGEN K J, OSENBERG C W, HUNGATE B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 [J]. Nature, 2011, 475(7355): 214−216. doi: 10.1038/nature10176
    [35] XUE K, YUAN M M, SHI Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming [J]. Nature Climate Change, 2016, 6(6): 595−600. doi: 10.1038/nclimate2940
    [36] PENDALL E, BRIDGHAM S D, HANSON P J, et al. Below-ground process responses to elevated CO2 and temperature: A discussion of observations, measurement methods, and models [J]. New Phytologist, 2004, 162(2): 311−322. doi: 10.1111/j.1469-8137.2004.01053.x
    [37] FORSTER P, RAMASWAMY V, ARTAXO P, et al. Changes in atmospheric constituents and in radiative forcing [M] the 4th Assessment Report of the IPCC WG1: The Physical Science Basis. DLR, 2007.
    [38] HE Z L, XU M Y, DENG Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2 [J]. Ecology Letters, 2010, 13(5): 564−575. doi: 10.1111/j.1461-0248.2010.01453.x
    [39] YERGEAU E, KANG S, HE Z L, et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect [J]. The ISME Journal, 2007, 1(2): 163−179. doi: 10.1038/ismej.2007.24
    [40] REEVE J R, SCHADT C W, CARPENTER-BOGGS L, et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities [J]. The ISME Journal, 2010, 4(9): 1099−1107. doi: 10.1038/ismej.2010.42
    [41] LIU Z F, LIU G H, FU B J, et al. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China [J]. Ecological Research, 2008, 23(3): 511−518. doi: 10.1007/s11284-007-0405-9
    [42] WARDLE D A. Ecological linkages between aboveground and belowground biota [J]. Science, 2004, 304(5677): 1629−1633. doi: 10.1126/science.1094875
    [43] ZHANG Y G, CONG J, LU H, et al. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types [J]. PLoS One, 2014, 9(4): e93773. doi: 10.1371/journal.pone.0093773
    [44] ROUSK J, BROOKES P C, BAATH E. The microbial PLFA composition as affected by pH in an arable soil [J]. Soil Biology & Biochemistry, 2010, 42(3): 516−520.
    [45] BASTIDA F, MORENO J L, HERNÁNDEZ T, et al. Microbiological activity in a soil 15 years after its devegetation [J]. Soil Biology and Biochemistry, 2006, 38(8): 2503−2507. doi: 10.1016/j.soilbio.2006.02.022
    [46] LI Y Q, XU M, ZOU X M, et al. Soil CO2 efflux and fungal and bacterial biomass in a plantation and a secondary forest in wet tropics in Puerto Rico [J]. Plant and Soil, 2005, 268(1): 151−160. doi: 10.1007/s11104-004-0234-3
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  276
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-06-09
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回