• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木薯MePYL12基因克隆及采后生理性变质过程的表达分析

郭靖 章玉香 黄芷颐 吴春来 颜彦 曾坚 胡伟

郭靖,章玉香,黄芷颐,等. 木薯 MePYL12基因克隆及采后生理性变质过程的表达分析 [J]. 福建农业学报,2021,36(1):17−23 doi: 10.19303/j.issn.1008-0384.2021.01.003
引用本文: 郭靖,章玉香,黄芷颐,等. 木薯 MePYL 12基因克隆及采后生理性变质过程的表达分析 [J]. 福建农业学报,2021,36(1):17−23 doi: 10.19303/j.issn.1008-0384.2021.01.003
GUO J, ZHANG Y X, HUANG Z Y, et al. Cloning and Post-harvest Physiological Deterioration Expression of MePYL12 of Cassava [J]. Fujian Journal of Agricultural Sciences,2021,36(1):17−23 doi: 10.19303/j.issn.1008-0384.2021.01.003
Citation: GUO J, ZHANG Y X, HUANG Z Y, et al. Cloning and Post-harvest Physiological Deterioration Expression of MePYL 12 of Cassava [J]. Fujian Journal of Agricultural Sciences,2021,36(1):17−23 doi: 10.19303/j.issn.1008-0384.2021.01.003

木薯MePYL12基因克隆及采后生理性变质过程的表达分析

doi: 10.19303/j.issn.1008-0384.2021.01.003
基金项目: 韶关学院重点项目(SZ2018KJ05);广东省教育厅青年创新人才项目(2018KQNCX234);韶关市科技计划项目(2019sn087);国家自然科学基金(31901537);韶关学院博士启动项目(99000615)
详细信息
    作者简介:

    郭靖(1989−),男,博士,讲师,研究方向:植物分子生物学(E-mail:jingaj@163.com)

    通讯作者:

    曾坚(1987−),男,博士,讲师,研究方向:植物分子生物学(E-mail:zengjian@sgu.edu.cn)

  • 中图分类号: S 533

Cloning and Post-harvest Physiological Deterioration Expression of MePYL12 of Cassava

  • 摘要:   目的  脱落酸受体PYL家族基因为ABA信号通路的重要成员。研究PYL基因在木薯块根的采后生理性变质(post-harvest physiological deterioration, PPD)和非生物胁迫中的功能,能够为进一步研究ABA信号在木薯抗逆和PPD过程中的功能奠定基础。  方法  本研究从木薯品种SC124中通过RT-PCR技术克隆得到了MePYL12基因,对它的蛋白质进行相关生信分析,如遗传进化关系、结构域、蛋白质结构预测、理化性质及基因的启动子元件分析,同时对MePYL12基因在相关处理和木薯PPD过程中的表达量进行分析。  结果  (1)克隆得到的MePYL12长度为567 bp,氨基酸数量为188,理论等电点为5.55,三级结构预测显示含有典型PYL螺旋手柄结构,与蓖麻和橡胶树中PYL蛋白序列的相似性较高,达到了86.77 %和94.68 %。MePYL12基因的蛋白序列含有PYL蛋白家族的保守结构域,特别是ABA结合的区域“Latch”和“Gate”序列100%一致,这些结果表明MePYL12基因编码的蛋白质属于PYL家族成员并且高度保守。(2)10个木薯组织中的MePYL12基因表达分析显示,该基因在分生组织和叶片中的表达水平最高。(3)MePYL12基因主要的启动子元件为光应答元件(Light-responsive motifs)、干旱诱导元件(Drought-induced motif)、ABA应答元件(ABA responsive motif)等元件。(4)MePYL12基因的表达水平显著受到干旱胁迫和ABA处理诱导。在木薯块根的PPD过程也被显著诱导,在6 h达到最高,随后慢慢下降。  结论  MePYL12基因具有提高植物应对非生物胁迫能力的潜能,同时可能参与了木薯块根的PPD过程,也为后续研究相关功能奠定了基础。
  • 图  1  MePYL12基因扩增结果

    注:M:DNA标志物;1:样品

    Figure  1.  PCR amplification of MePYL12

    Note: M: Marker DNA, 1: sample

    图  2  MePYL12蛋白三级结构预测

    Figure  2.  Predicted tertiary structure of MePYL12

    图  3  MePYL12结构域分析

    Figure  3.  Conserved domain analysis on MePYL12

    图  4  MePYL12蛋白序列的同源性比对

    注:TKR65798.1银白杨[Populus alba];XP_002324762.2毛果杨[Populus trichocarpa];XP_021640277.1橡胶树[Hevea brasiliensis];XP_002516457.1蓖麻[Ricinus communis];XP_022731634.1榴莲[Durio zibethinus];EOY29881.1可可[Theobroma cacao];KAE8691402.1木瑾[Hibiscus syriacus];XP_018845809.1核桃[Juglans regia];XP_030955825.1栎树[Quercus lobata];XP_006450814.1克来门柚[Citrus clementina];XP_012077302.1麻风树[Jatropha curcas];Gate: Gate loop; Latch: Latch loop; TKR65798.1 [Populus alba]; XP_002324762.2 [Populus trichocarpa]; XP_021640277.1 [Hevea brasiliensis]; XP_002516457.1 [Ricinus communis]; XP_022731634.1 [Durio zibethinus]; EOY29881.1 [Theobroma cacao]; KAE8691402.1 [Hibiscus syriacus]; XP_018845809.1 [Juglans regia]; XP_030955825.1 [Quercus lobata]; XP_006450814.1 [Citrus clementina]; XP_012077302.1 [Jatropha curcas]; Gate: 门环;Latch: 锁环;

    Figure  4.  Homologous sequence alignments of MePYL12

    图  5  PYL基因的系统进化树

    Figure  5.  Phylogenetic tree of PYL genes

    图  6  不同组织中的MePYL12表达

    注:L:叶,M:中脉,S:茎,RAM:根顶端分生组织,P:叶柄,LB:侧芽,OES:分化胚组织,FR:须根,SAM:茎顶端分生组织,SR:根。差异字母则表明在Duncan's 多重比较中显著(P<0.05)。

    Figure  6.  Expression of MePYL12 in different tissues/organs of cassava

    Note: L: leaf, M: midvein, S: stem, RAM: root apical meristem, P: petole, LB: lateral bud, OES: organized embryogenic structure, FR: fibrous root, SAM: shoot apical meristem, SR: storage root. Different letters: Significant differences based on Duncan's multiple range tests(P<0.05).

    图  7  MePYL12基因在不同处理下的表达,A:ABA;B:PEG

    注:*代表与0 d差异显著(P<0.05);

    Figure  7.  Expressions of MePYL12 under Treatment A (ABA) and Treatment B (PEG)

    Note: * represented significant difference compared to control(0 d)(P<0.05);

    图  8  MePYL12基因在PPD中的表达变化

    注:*代表与0 h差异显著(P<0.05); **表示与0 h差异极显著(P<0.01);

    Figure  8.  Expressions of MePYL12 of cassava tubers in PPD

    Note: * represented significant difference compared to control(0 h)(P<0.05); ** represented extremely significant difference compared to control(0 h)(P<0.01)

    表  1  MePYL12启动子元件组成分析

    Table  1.   Promoter elements of MePYL12

    序号
    No.
    元件名称
    Element name
    数目
    Number
    功能预测
    Predicted function
    1 光应答元件
    Box 4
    15 光应答
    Light-responsive
    2 光应答元件
    G-Box
    1 光应答
    Light-responsive
    3 ABA应答元件
    ABRE
    1 ABA应答
    Abscisic acid responsive
    4 干旱诱导元件
    MBS
    1 干旱诱导
    Drought-inducible
    5 胁迫应答元件
    TC-rich repeats
    1 防御和应激反应
    Defense and stress responsiveness
    6 水杨酸反应元件
    TCA-element
    1 水杨酸诱导
    Salicylic acid responsiveness
    下载: 导出CSV
  • [1] RAGHAVENDRA A S, GONUGUNTA V K, CHRISTMANN A, et al. ABA perception and signalling [J]. Trends in Plant Science, 2010, 15(7): 395−401. doi: 10.1016/j.tplants.2010.04.006
    [2] KRASENSKY J, JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks [J]. Journal of Experimental Botany, 2012, 63(4): 1593−1608. doi: 10.1093/jxb/err460
    [3] PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2c protein phosphatases via the PYR/PYL family of start proteins [J]. Science, 2009, 324(5930): 1068−1071.
    [4] MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors [J]. Science, 2009, 324(5930): 1064−1068.
    [5] ZHANG X L, JIANG L, XIN Q, et al. Structural basis and functions of abscisic acid receptors PYLs [J]. Frontiers in Plant Science, 2015, 6: 88.
    [6] MIYAZONO K I, MIYAKAWA T, SAWANO Y, et al. Structural basis of abscisic acid signalling [J]. Nature, 2009, 462(7273): 609−614. doi: 10.1038/nature08583
    [7] GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid [J]. Plant Cell, 2012, 24(6): 2483−2496. doi: 10.1105/tpc.112.098574
    [8] GONZALEZ-GUZMAN M, RODRIGUEZ L, LORENZO-ORTS L, et al. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance [J]. Journal of Experimental Botany, 2014, 65(15): 4451−4464. doi: 10.1093/jxb/eru219
    [9] LIANG C Z, LIU Y, LI Y Y, et al. Activation of ABA receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis [J]. Frontiers in Plant Science, 2017, 8: 1453. doi: 10.3389/fpls.2017.01453
    [10] KIM H, LEE K, HWANG H, et al. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression [J]. Journal of Experimental Botany, 2014, 65(2): 453−464. doi: 10.1093/jxb/ert397
    [11] ZHAO Y, CHAN Z L, GAO J H, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1949−1954. doi: 10.1073/pnas.1522840113
    [12] SANTIAGO J, RODRIGUES A, SAEZ A, et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs [J]. Plant Journal, 2009, 60(4): 575−588. doi: 10.1111/j.1365-313X.2009.03981.x
    [13] CHEN Z Q, KONG L, ZHOU Y, et al. Endosperm-specific OsPYL8 and OsPYL9 act as positive regulators of the ABA signaling pathway in rice seed germination [J]. Functional Plant Biology, 2017, 44(6): 635−645. doi: 10.1071/FP16314
    [14] YU J L, GE H M, WANG X K, et al. Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars [J]. Frontiers in Plant Science, 2017, 8: 1752. doi: 10.3389/fpls.2017.01752
    [15] HE Z H, ZHONG J W, SUN X P, et al. The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance [J]. Frontiers in Plant Science, 2018, 9: 422. doi: 10.3389/fpls.2018.00422
    [16] 颜彦, 铁韦韦, 丁泽红, 等. 木薯MePYL8基因克隆及表达分析 [J]. 分子植物育种, 2018, 16(14):4498−4504.

    YAN Y, TIE W W, DING Z H, et al. Cloning and expression analysis of MePYL8 gene in cassava [J]. Molecular Plant Breeding, 2018, 16(14): 4498−4504.(in Chinese)
    [17] 赵思涵, 颜彦, 陈志晟, 等. 木薯PYL13基因克隆及表达分析 [J]. 南方农业学报, 2019, 50(12):2629−2637.

    ZHAO S H, YAN Y, CHEN Z S, et al. Cloning and expression analysis of MePYL13 gene in cassava [J]. Journal of Southern Agriculture, 2019, 50(12): 2629−2637.(in Chinese)
    [18] LIU S, ZAINUDDIN I M, VANDERSCHUREN H, et al. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots [J]. Plant Molecular Biology, 2017, 94: 185−195. doi: 10.1007/s11103-017-0602-z
    [19] 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望 [J]. 生命科学, 2014, 26(5):465−473.

    ZHANG P, YANG J, ZHOU W Z, et al. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 465−473.(in Chinese)
    [20] HU W, KONG H, GUO Y L, et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava [J]. Frontiers in Plant Science, 2016, 7: 736.
    [21] XU J, DUAN X G, YANG J, et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots [J]. Plant Physiology, 2013, 161(3): 1517−1528. doi: 10.1104/pp.112.212803
    [22] ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production [J]. Plant Physiology, 2012, 159(4): 1396−1407. doi: 10.1104/pp.112.200345
    [23] 张振文, 李开绵. 木薯块根采后腐烂及贮藏方法研究进展 [J]. 热带作物学报, 2012, 33(7):1326−1331. doi: 10.3969/j.issn.1000-2561.2012.07.035

    ZHANG Z W, LI K M. Review on postharvest deterioration and methods of storage for cassava tuberous root [J]. Chinese Journal of Tropical Crops, 2012, 33(7): 1326−1331.(in Chinese) doi: 10.3969/j.issn.1000-2561.2012.07.035
    [24] 曾坚, 廖凤凤, 吴春来, 等. 木薯MeHSF7基因克隆及表达分析 [J]. 南方农业学报, 2020, 51(6):1256−1264.

    ZENG J, LIAO F F, WU C L, et al. Cloning and expression analysis of MeHSF7 gene in cassava [J]. Journal of Southern Agriculture, 2020, 51(6): 1256−1264.(in Chinese)
    [25] 杨方威, 段懿菲, 冯叙桥. 脱落酸的生物合成及对水果成熟的调控研究进展 [J]. 食品科学, 2016, 37(3):266−272. doi: 10.7506/spkx1002-6630-201603046

    YANG F W, DUAN Y F, FENG X Q. Advances in biosynthesis of abscisic acid and its roles in regulation of fruit ripening [J]. Food Science, 2016, 37(3): 266−272.(in Chinese) doi: 10.7506/spkx1002-6630-201603046
    [26] MEGA R, ABE F, KIM J S, et al. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors [J]. Nature Plants, 2019, 5(2): 153−159. doi: 10.1038/s41477-019-0361-8
    [27] VANDERSCHUREN H, NYABOGA E, POON J S, et al. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration [J]. Plant Cell, 2014, 26(5): 1913−1924. doi: 10.1105/tpc.114.123927
    [28] OWITI, J, GROSSMANN, J, GEHRIG, P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration [J]. Plant Journal, 2011, 67(1): 145−156. doi: 10.1111/j.1365-313X.2011.04582.x
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  111
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回