• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物乳杆菌LV02抑菌特性及发酵培养基优化研究

杨悦 滑婉月 陈志迪 张瑶 易欣欣 高秀芝

杨悦,滑婉月,陈志迪,等. 植物乳杆菌LV02抑菌特性及发酵培养基优化研究 [J]. 福建农业学报,2021,36(1):91−103 doi: 10.19303/j.issn.1008-0384.2021.01.012
引用本文: 杨悦,滑婉月,陈志迪,等. 植物乳杆菌LV02抑菌特性及发酵培养基优化研究 [J]. 福建农业学报,2021,36(1):91−103 doi: 10.19303/j.issn.1008-0384.2021.01.012
YANG Y, HUA W Y, CHEN Z D, et al. Study on Bacteriostatic Characteristics of Lactobacillus plantarum LV02 and Optimization of Fermentation Medium [J]. Fujian Journal of Agricultural Sciences,2021,36(1):91−103 doi: 10.19303/j.issn.1008-0384.2021.01.012
Citation: YANG Y, HUA W Y, CHEN Z D, et al. Study on Bacteriostatic Characteristics of Lactobacillus plantarum LV02 and Optimization of Fermentation Medium [J]. Fujian Journal of Agricultural Sciences,2021,36(1):91−103 doi: 10.19303/j.issn.1008-0384.2021.01.012

植物乳杆菌LV02抑菌特性及发酵培养基优化研究

doi: 10.19303/j.issn.1008-0384.2021.01.012
基金项目: 现代农业产业技术体系北京市叶类蔬菜产业创新团队项目(BAIC07-2021);北京市农委新型生产经营主体科技能力提升工程项目(2018)
详细信息
    作者简介:

    杨悦(1994−),女,硕士,研究方向:食品微生物(E-mail:yuebaobei329@163.com

    通讯作者:

    易欣欣(1964−),男,硕士,副教授,研究方向:致病微生物与蔬菜产品安全(E-mail:yixinxin2008@163.com

    高秀芝(1977−),女,博士,副教授,研究方向:食品微生物与生物技术(E-mail:gxz@bua.edu.cn

  • 中图分类号: TS 201.3; TQ 920.6

Study on Bacteriostatic Characteristics of Lactobacillus plantarum LV02 and Optimization of Fermentation Medium

  • 摘要:   目的   优化植物乳杆菌LV02发酵培养基,研究其抑菌特性,为开发抗菌保鲜类产品提供技术参考。   方法   以大肠杆菌YS为指示菌,抑菌圈直径及生物量OD600为评价指标。在单因素试验的基础上,采用PB试验初步确定各因素的高低水平,接着采用最陡爬坡试验进一步确定步长及方向来接近最大产值,确定CCD试验中心点。最后,采用CCD设计试验,研究各影响因素及其交互作用对植物乳杆菌LV02抑菌性及生物量OD600的影响,确定各影响因素的最佳水平。并通过牛津杯法研究LV02的抑菌特性,来确定应用环境的设定范围。   结果   LV02的优化发酵培养基配方为:葡萄糖34.07 g·L−1、酵母浸粉18.12 g·L−1、磷酸氢二钾2 g·L−1、硫酸锰0.16 g·L−1、乙酸钠5 g·L−1、硫酸镁0.20 g·L−1、柠檬酸铵1 g·L−1、吐温80 1 mL·L−1、胡萝卜汁50 mL·L−1,蒸馏水1 L。以5%接种,37 ℃培养24 h,结果为对大肠杆菌YS的抑菌圈直径比未优化前提高了近26%,OD600提高了12%。通过抑菌特性的分析,确定了粗提植物乳杆菌LV02的细菌素所需硫酸铵饱和度为80%,证明了植物乳杆菌LV02具有热稳定性(100 ℃,120 min)、酸碱稳定性(pH 3.0~7.5)及抑菌性。   结论   采用CCD试验优化植物乳杆菌LV02发酵培养基,可有效提高生物量OD600及对大肠杆菌YS的抑菌性。通过牛津杯法研究LV02的抑菌特性,确定了pH、温度具稳定性的设定范围。
  • 图  1  不同饱和度的硫酸铵溶液沉淀细菌素的效果

    Figure  1.  Effect of saturation degree of ammonium sulfate solution on bacteriocin precipitation

    图  2  热处理对植物乳杆菌LV02抑菌效果的影响

    Figure  2.  Effect of heat treatment on bacteriostatic property of LV02 bacteriocin

    图  3  不同pH对植物乳杆菌LV02抑菌性的影响

    Figure  3.  Antibacterial effect of LV02 bacteriocin under pH in large intestines

    图  4  不同氮源对LV02的细菌素抗菌性的影响

    注:1:大豆蛋白胨,2:酵母浸粉+蛋白胨(1:1),3:酵母浸粉,4:蛋白胨,5:酪蛋白胨

    Figure  4.  Effect of culture nitrogen sources on antibacterial activity of LV02 bacteriocin

    Note: 1: soy peptone; 2: yeast extract+peptone (1:1); 3: yeast powder; 4: peptone; 5: casein peptone.

    图  5  不同碳源对LV02的细菌素抗菌性的影响

    注:1:葡萄糖;2:葡萄糖+乳糖(1:1);3:D-果糖;4:乳糖;5:果糖;6:蔗糖;7:葡萄糖+蔗糖(1:1)

    Figure  5.  Effect of culture carbon sources on antibacterial activity of LV02 bacteriocin

    Note:1: glucose; 2: glucose+lactose (1:1); 3: D-fructose; 4: lactose; 5: fructose; 6: sucrose; 7: glucose+sucrose (1:1).

    图  6  磷酸氢二钾对LV02的细菌素抗菌效果的影响

    Figure  6.  Effect of dipotassium hydrogen phosphate in medium on antibacterial activity of LV02 bacteriocin

    图  9  硫酸锰对LV02的细菌素抗菌效果的影响

    Figure  9.  Effect of manganese sulfate in medium on antibacterial activity of LV02 bacteriocin

    图  7  乙酸钠对LV02的细菌素抑菌效果的影响

    Figure  7.  Effect of sodium acetate in medium on antibacterial activity of LV02 bacteriocin

    图  8  硫酸镁对LV02的细菌素抗菌效果的影响

    Figure  8.  Effect of magnesium sulfate in medium on antibacterial activity of LV02 bacteriocin

    图  10  吐温对LV02的细菌素抗菌效果的影响

    注:结合 Duncan 氏法做多重比较,图中标有不同小写字母者表示组间差异显著(P<0.05);相同字母则表示组间差异不显著(P>0.05)。

    Figure  10.  Effect of Tween-80 in medium on antibacterial activity of LV02 bacteriocin

    Note: Combined with Duncan's method for multiple comparisons; those marked with different lowercase letters indicate significant differences between groups (P<0.05); those with same letter indicate no significant differences between groups (P>0.05).

    图  11  不同生长因子对LV02细菌素抗菌效果的影响

    注:1:黄瓜汁;2:西红柿汁;3:胡萝卜汁;4:胡萝卜汁+西红柿汁;5:西红柿汁+黄瓜汁

    Figure  11.  Effect of growth factors in medium on antibacterial activity of LV02 bacteriocin

    Note: 1: cucumber juice; 2: tomato juice; 3: carrot juice; 4: carrot juice+tomato juice; 5: tomato juice+cucumber juice.

    图  12  葡萄糖、硫酸锰和酵母浸粉两两交互影响LV02抑菌圈直径的曲面图

    Figure  12.  Curved view on effects of glucose, manganese sulfate, and yeast extract in medium on LV02 inhibition zone diameter

    图  15  葡萄糖、硫酸锰和酵母浸粉两两交互影响LV02 OD600的等高线图

    Figure  15.  Contour lines on effects of glucose, manganese sulfate, and yeast extract in medium on LV02 OD600

    图  13  葡萄糖、硫酸锰和酵母浸粉两两交互影响LV02抑菌圈直径的等高线图

    Figure  13.  Contour lines on effects of glucose, manganese sulfate, and yeast extract in medium on LV02 inhibition zone diameter

    图  14  葡萄糖、硫酸锰和酵母浸粉两两交互影响LV02 OD600的曲面图

    Figure  14.  Curved view on effects of glucose, manganese sulfate, and yeast extract in medium on LV02 OD600

    表  1  Plackett-Burman 设计因子水平及编码

    Table  1.   Factors, levels, and codes of Plackett-Burman experimental design

    变量
    Variable
    实际变量
    Actual variable
    单位
    Unit
    低水平
    Low level
    高水平
    High Level
    −1+1
    X1 葡萄糖 Glucose g·L−1 15.00 25.00
    X2 酵母浸粉 Yeast extract g·L−1 14.00 24.00
    X3 硫酸镁 Magnesium sulfate g·L−1 0.15 0.25
    X4 乙酸钠 Sodium acetate g·L−1 3.00 7.00
    X5 吐温80 Tween 80 ml·L−1 0.50 1.50
    X6 胡萝卜汁 Carrot juice ml·L−1 25.00 75.00
    X7 硫酸锰 Manganese sulfate g·L−1 0.15 0.25
    下载: 导出CSV

    表  2  CCD试验各因子水平数

    Table  2.   Levels for each factor on CCD experiment

    变量
    Variable
    实际变量
    Actual variable/(g·L−1
    水平 Level
    −1.682−10+1+1.682
    X1 葡萄糖 Glucose 21.55 27.00 35.00 43.00 48.45
    X2 酵母浸粉 Yeast extract 14.64 16.00 18.00 20.00 21.36
    X7 硫酸锰 Manganese sulfate 0.06 0.10 0.16 0.22 0.26
    下载: 导出CSV

    表  3  LV02对3种指示菌的抑菌结果

    Table  3.   Antibacterial results of LV02 against three kinds of ndicator bacteria

    指示菌名称
    Indicator bacteria
    保菌编号/
    NCBI登录号
    Bacteria
    number/
    NCBI
    registration
    number
    LV02抑菌
    圈直径
    LV02
    inhibition
    zone
    diameter/
    mm
    大肠杆菌YS Escherichia coli YS MN153456.1 19.41 ± 0.34
    猪霍乱沙门氏菌 Salmonella choleraesuis ATCC10708 24.74 ± 0.51
    单增李斯特氏菌 Listeria monocytogenes ATCC54001 22.30 ± 0.33
    下载: 导出CSV

    表  4  Plackett-Burman试验结果

    Table  4.   Results of Plackett-Burman experiment

    试验序号
    Experiment serial number
    因子 Factor抑菌圈直径
    Bacteriostatic circle diameter/mm
    X1X2X3X4X5X6X7
    1+1+1−1+1+1+1−123.50
    2−1+1+1−1+1+1+118.67
    3+1−1+1+1−1+1+123.67
    4−1+1−1+1+1−1+118.33
    5−1−1+1−1+1+1−120.67
    6−1−1−1+1−1+1+120.67
    7+1−1−1−1+1−1+121.33
    8+1+1−1−1−1+1−121.33
    9+1+1+1−1−1−1+120.67
    10−1+1+1+1−1−1−121.33
    11+1−1+1+1+1−1−123.67
    12−1−1−1−1−1−1−121.67
    下载: 导出CSV

    表  5  各因子贡献率及效应值

    Table  5.   Contribution rates and effect values of individual factors

    变量
    Variable
    P
    P value
    效应值
    Effect value
    贡献率
    Contribution rate/%
    重要性
    Importance
    X10.0100*1.0741.391
    X20.0480*−0.6515.413
    X30.5433−0.650.866
    X40.07050.5711.734
    X50.3190−0.262.535
    X60.61690.130.577
    X70.0340*−0.7419.612
    注: * :该因子效应显著(P<0.05); * *:该因子效应极显著(P<0.01)。表8、9同。
    Note: *: significant at P<0.05; **: extremely significant at P<0.01. The same as table 8、9.
    下载: 导出CSV

    表  6  最陡爬坡试验结果

    Table  6.   Results of steepest ascent experiment

    试验组号
    Experiment
    group
    number
    葡萄糖
    Glucose/
    (g·L−1
    硫酸锰
    Manganese
    sulfate/
    (g·L−1
    酵母浸粉
    Yeast
    extract/
    (g·L−1
    抑菌圈直径
    Bacteriostatic
    circle diameter/
    mm
    111.000.3424.0020.87
    219.000.2822.0022.00
    327.000.2220.0022.47
    435.000.1618.0024.50
    543.000.1016.0022.42
    下载: 导出CSV

    表  7  中心组合设计及结果

    Table  7.   CCD design and response values

    试验组号
    Experiment group number
    因子
    Factor
    抑菌圈直径
    Bacteriostatic circle diameter/mm
    OD600
    葡萄糖X1
    Glucose X1
    硫酸锰X7
    Manganese sulfate X7
    酵母浸粉X2
    Yeast extract X2
    实际值
    Actual value
    预测值
    Predictive value
    实际值
    Actual value
    预测值
    Predictive value
    1 −1 −1 −1 23.55 23.44 2.680 2.690
    2 +1 −1 −1 22.80 22.65 2.598 2.560
    3 −1 +1 −1 23.43 23.48 2.690 2.680
    4 +1 +1 −1 23.40 23.13 2.620 2.580
    5 −1 −1 +1 23.40 23.53 2.620 2.640
    6 +1 −1 +1 23.52 23.33 2.682 2.660
    7 −1 +1 +1 23.00 23.01 2.600 2.610
    8 +1 +1 +1 23.33 23.25 2.700 2.660
    9 −1.682 0 0 23.53 23.38 2.684 2.650
    10 +1.682 0 0 22.58 22.92 2.510 2.580
    11 0 −1.682 0 22.67 22.76 2.580 2.590
    12 0 +1.682 0 22.62 22.73 2.550 2.580
    13 0 0 −1.682 23.73 23.92 2.700 2.730
    14 0 0 +1.682 24.10 24.11 2.750 2.760
    15 0 0 0 24.63 24.56 2.852 2.880
    16 0 0 0 24.72 24.56 2.895 2.880
    17 0 0 0 24.75 24.56 2.903 2.880
    18 0 0 0 24.00 24.56 2.850 2.860
    19 0 0 0 24.60 24.56 2.860 2.850
    20 0 0 0 24.70 24.56 2.900 2.900
    下载: 导出CSV

    表  8  以抑菌圈直径为响应值的回归方程方差分析

    Table  8.   Analysis of variance for regression model based on bacteriostatic zone diameter as response value

    方差来源
    Source of
    variance
    平方和
    Sum of
    square
    自由度
    Degree of
    freedom
    F
    F value
    P
    P value
    模型 Model 9.5300 9 13.9700 0.000 1**
    X1 0.2600 1 3.4100 0.094 7
    X7 1.520×10−3 1 0.0200 0.890 2
    X2 0.0400 1 0.5300 0.482 4
    X1*X7 0.0970 1 1.2800 0.284 8
    X1*X2 0.0170 1 2.3000 0.160 7
    X7*X2 0.1600 11 2.0740 0.180 9
    X12 3.5700 11 7.0600 <0.000 1**
    X72 5.9500 1 78.4800 <0.000 1**
    X22 0.5400 1 7.1200 0.023 6*
    残差 Residual 0.7600 10
    失拟项 Missing item 0.3600 5 0.8900 0.549 4
    下载: 导出CSV

    表  9  以OD600为响应值的回归方程方差分析

    Table  9.   Analysis of variance for regression model based on OD600 as response value

    方差来源
    Source of
    variance
    平方和
    Sum of
    square
    自由度
    Degree of
    freedom
    F
    F value
    P
    P value
    模型 Model 0.2800 9 17.6700 <0.000 1**
    X1 12.9020 1 3.3100 0.098 8
    X7 3.065×10−5 1 0.0170 0.897 8
    X2 7.046×10−4 1 0.4000 0.541 8
    X1*X7 3.125×10−4 1 0.1800 0.682 9
    X1*X2 0.0120 1 6.9800 0.024 7*
    X7*X2 1.445×10−4 1 0.0820 0.780 7
    X12 0.1200 1 68.5700 <0.000 1**
    X72 0.1500 1 86.5400 <0.000 1**
    X22 0.0310 1 17.5800 0.0019**
    残差 Residual 0.0180 10
    失拟项 Missing item 0.0140 5 4.3200 0.067 0
    下载: 导出CSV

    表  10  LV02发酵培养基验证试验结果

    Table  10.   Verification of LV02 fermentation medium

    试验组别
    Test Group
    葡萄糖
    glucose/
    (g·L−1
    酵母浸粉
    Yeast extract/(g·L−1
    牛肉膏+蛋白胨+
    酵母粉
    Beef extract+
    peptone+
    yeast powder/
    (g·L−1
    硫酸锰
    Manganese sulfate/
    (g·L−1
    胡萝卜汁
    Carrot juice/
    (mL·L−1
    抑菌圈直径
    Bacteriostaticcircle
    diameter/mm
    OD600
    对照组 Control group 20.00 19.00 0.20 19.36 ± 0.27 2.435 ± 0.030
    预测组 Forecast Group 34.07 18.12 0.16 50.00 24.58 2.877
    实验组 Test group 34.07 18.12 0.16 50.00 24.50 ± 0.31 2.877 ± 0.230
    下载: 导出CSV
  • [1] SON S H, JEON H L, JEON E B, et al. Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities [J]. LWT - Food Science and Technology, 2017, 85: 181−186. doi: 10.1016/j.lwt.2017.07.018
    [2] 杨永亮. 泡菜中植物乳杆菌的分离鉴定及其应用[D]. 广州: 华南理工大学, 2013.

    YANG Y L. Isolation and identification of the Lactobacillus Plantarum strain from pickles and its application[D]. Guangzhou: South China University of Technology, 2013.(in Chinese)
    [3] 金银卡编辑部. 乳酸菌素在饲料中应用研究 [J]. 广东饲料, 2016, 25(12):32−34.

    Editorial Department of Gold and Silver Cards. Study on the application of lactobacteriocin in feed [J]. Guangdong Feed, 2016, 25(12): 32−34.(in Chinese)
    [4] KUMAR V, SHEORAN P, GUPTA A, et al. Antibacterial property of bacteriocin produced by Lactobacillus plantarum LD4 isolated from a fermented food [J]. Annals of Microbiology, 2016, 66(4): 1431−1440. doi: 10.1007/s13213-016-1230-6
    [5] 刘彩琴, 陆胤, 王石磊,等. 黄酒米浆水中抗菌乳酸菌的筛选及特性分析[J]. 食品工业科技, 2020(9):115 − 118 .

    LIU C Q, LU Y, WANG S L, et al. Screening and characteristics analysis of antibacterial lactic acid bacteria from rice pulp of huangjiu[J]. Food Industry Science and Technology, 2019: 115 − 118.(in Chinese)
    [6] 姜旭德, 张春华. 乳酸菌素及其乳酸链球菌素在食品中的应用 [J]. 中国乳业, 2017(2):60−62.

    JIANG X D, ZHANG C H. The application of lactobacteriocin and nisin in food processing [J]. China Dairy, 2017(2): 60−62.(in Chinese)
    [7] 张敏. pH对植物乳杆菌KDFR27生长的影响[D]. 哈尔滨: 东北农业大学, 2016.

    ZHANG M. Effect of pH on the growth of Lactobacillus plantarum KDFR27[D]. Harbin: Northeast Agricultural University, 2016.(in Chinese)
    [8] 刘伦伦, 刘焱, 瞿朝霞, 等. 植物乳杆菌发酵盐渍辣椒汁培养基的优化 [J]. 中国酿造, 2014, 33(2):32−36. doi: 10.3969/j.issn.0254-5071.2014.02.008

    LIU L L, LIU Y, QU Z X, et al. Optimization of pepper juice medium for Lactobacillus plantarum [J]. China Brewing, 2014, 33(2): 32−36.(in Chinese) doi: 10.3969/j.issn.0254-5071.2014.02.008
    [9] 王瑶, 李琪, 李平兰. 植物乳杆菌LPL-1产细菌素发酵培养基优化 [J]. 农业机械学报, 2018, 49(9):311−317. doi: 10.6041/j.issn.1000-1298.2018.09.036

    WANG Y, LI Q, LI P L. Optimization of fermentation medium of Lactobacillus plantarum LPL-1 for plantaricin LPL-1 production by response surface methodology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 311−317.(in Chinese) doi: 10.6041/j.issn.1000-1298.2018.09.036
    [10] 王瑶, 李琪, 李平兰. 响应面法优化植物乳杆菌LPL-1产细菌素发酵条件及细菌素理化性质分析 [J]. 食品科学, 2018, 39(22):101−109. doi: 10.7506/spkx1002-6630-201822016

    WANG Y, LI Q, LI P L. Optimization of fermentation conditions for plantaricin production by Lactobacillus plantarum LPL-1 by response surface methodology and its physicochemical properties [J]. Food Science, 2018, 39(22): 101−109.(in Chinese) doi: 10.7506/spkx1002-6630-201822016
    [11] 徐珑倩, 胡凯弟, 张艾青, 等. 植物乳杆菌P158产细菌素培养基及培养条件的优化 [J]. 食品科学, 2017, 38(22):109−116. doi: 10.7506/spkx1002-6630-201722017

    XU L Q, HU K D, ZHANG A Q, et al. Optimization of medium and culture conditions for bacteriocin production by Lactobacillus plantarum P158 [J]. Food Science, 2017, 38(22): 109−116.(in Chinese) doi: 10.7506/spkx1002-6630-201722017
    [12] ZHAO S M, HAN J Z, BIE X M, et al. Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-tsai, a traditional Chinese fermented cabbage [J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2754−2764. doi: 10.1021/acs.jafc.5b05717
    [13] 许女, 史改玲, 张浩, 等. 植物乳杆菌KF1对奶牛乳房炎金黄色葡萄球菌的抑茵机制 [J]. 中国食品学报, 2016, 16(10):19−27.

    XU N, SHI G L, ZHANG H, et al. Antibacterial mechanism of Lactobacillus plantarum KF1 on Staphylococcus aureus isolated from subclinical mastitis milk [J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(10): 19−27.(in Chinese)
    [14] YOO H, RHEEM I, RHEEM S, et al. Optimizing medium components for the maximum growth of Lactobacillus plantarum JNU 2116 using response surface methodology [J]. Korean Journal for Food Science of Animal Resources, 2018, 38(2): 240−250.
    [15] 高秀芝, 康建依, 易欣欣, 等. 一种发酵蔬菜的混合益生菌、发酵蔬菜及其制备方法: 中国, 110106112A[P]. 2019−08−09.
    [16] 沈菲儿. 乳酸菌发酵对莲藕泡菜质构和风味影响的研究[D]. 扬州: 扬州大学, 2016.

    SHEN F E. Study on the effect of lactic acid bacteria fermentation on the texture and flavor of lotus root kimchi[D]. Yangzhou: Yangzhou University, 2016(in Chinese)
    [17] 张子豪. 高效抑制大肠埃希氏菌的芽孢杆菌筛选及其抑菌特性研究[D]. 北京: 北京农学院, 2018.

    ZHANG Z H. Optimization of fermentation culture medium and conditions of Bacillus with high antibacterial activity against Escherichia coli[D]. Beijing: Beijing University of Agriculture, 2018.(in Chinese)
    [18] 赵玉鉴. 益生性植物乳杆菌 C88 直投式发酵剂的制备及其应用[D]. 长春: 吉林农业大学, 2014.

    ZHAO Y J. Preparation and application of probiotic Lactobacillus plantarum C88 direct vat set culture[D]. Changchun: Jilin Agricultural University, 2014.(in Chinese)
    [19] 汤夏安, 刘彩莲, 邓业成, 等. 广西地不容内生真菌DBR-9产橘霉素的发酵条件优化 [J]. 河南农业科学, 2019, 48(7):81−87.

    TANG X A, LIU C L, DENG Y C, et al. Optimization of Fermentation Conditions for the Production of Citrinin from Endophytic Fungus DBR-9 of Stephania kwangsiensis [J]. Journal of Henan Agricultural Sciences, 2019, 48(7): 81−87.(in Chinese)
    [20] 杨慧娟. 具有抑制甜瓜枯萎病菌的植物乳杆菌筛选及其抑菌特性研究[D]. 呼和浩特: 内蒙古农业大学, 2014.

    YANG H J. Selection of fusarium oxysporum Inhibitory L. plantarum strains and characterization of their antifungal activity[D]. Hohhot: Inner Mongolia Agricultural University, 2014. (in Chinese)
    [21] 姜晶, 敖日格乐, 王纯洁, 等. 酸马奶提取植物乳杆菌DSM20174细菌素的理化特性研究 [J]. 中国畜牧兽医, 2016, 43(2):444−449.

    JIANG J, AORIGELE, WANG C J, et al. Study on physicochemical properties of Lactobacillus plantarum DSM20174 bacteriocin from koumiss [J]. China Animal Husbandry & Veterinary Medicine, 2016, 43(2): 444−449.(in Chinese)
    [22] 唐坚. 生菜的冰温保鲜及微生物预测模型的初步建立[D]. 上海: 上海师范大学, 2015.

    TANG J. Freezing-pointstorage of lettuce and thepreliminary establishment of predictionmodel of microorganisms[D]. Shanghai: Shanghai Normal University, 2015.(in Chinese)
    [23] KORDEL M, SAHL H G. Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin [J]. FEMS Microbiology Letters, 1986, 34(2): 139−144. doi: 10.1111/j.1574-6968.1986.tb01393.x
    [24] 章检明. 植物乳杆菌 B23 合成细菌素发酵条件优化及诱导调控研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHANG J M. Optimization of fermentationconditions and research of inductionregulation for bacteriocin productionby Lactobacillus plantarum B 23[D]. Harbin: Harbin Institute of Technology, 2015.(in Chinese)
    [25] 王莉. 食品营养学[M]. 第三版. 北京: 化学工业出版社, 2018: 93.
    [26] 王帅. 植物乳杆菌培养及冻干技术研究[D]. 西安: 陕西科技大学, 2016.

    WANG S. Study on cultivation and cryoprotectant of Lactobacillus plantarum[D]. Xian: Shaanxi Universityof Science and Technology, 2016.(in Chinese)
    [27] 施铜铃, 卢烨, 梁金钟. 嗜酸乳杆菌HUC-La-0812菌株高密度生长培养基的优化 [J]. 乳业科学与技术, 2009, 32(6):271−274. doi: 10.3969/j.issn.1671-5187.2009.06.007

    SHI T L, LU Y, LIANG J Z. Optimization of high-density growth medium of Lactobacillus acidophilus strain HUC-La-0812 [J]. Journal of Dairy Science and Technology, 2009, 32(6): 271−274.(in Chinese) doi: 10.3969/j.issn.1671-5187.2009.06.007
    [28] 赵静. 直投式微生物菌剂及发芽谷物发酵饮品的研究[D]. 哈尔滨: 哈尔滨商业大学, 2015.

    ZHAO J. Researched on direct vat set(dvs) microbial starter and sprouting grains fermented beverages[D]. Harbin: Harbin University of Commerce, 2015.(in Chinese)
    [29] 杨杰, 谷新晰, 李晨, 等. 响应面法优化植物乳杆菌绿豆乳增殖培养基 [J]. 中国食品学报, 2015, 15(12):83−90.

    YANG J, GU X X, LI C, et al. Optimization of multiplying culture of mungbean milk of Lactobacillus plantarum by response surface method [J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(12): 83−90.(in Chinese)
    [30] 刘正奇. 植物乳杆菌WLPL04的胞外多糖结构与益生功能研究及其发酵工艺优化[D]. 南昌: 南昌大学, 2018.

    LIU Z Q. Research on structure and probiotic function of exopolysaccharide from Lactobacillus plantarum WLPL04 and optimization of its fermentation processes[D]. Nanchang: Nanchang University, 2018. (in Chinese)
  • 加载中
图(15) / 表(10)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  164
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-12-17
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回