• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻秸秆生物炭对3种土壤水溶态Cd动态变化的影响

张家康 庄雅玲 张力文 林桂权 林永崇 李荭荭

张家康,庄雅玲,张力文,等. 水稻秸秆生物炭对3种土壤水溶态Cd动态变化的影响 [J]. 福建农业学报,2021,36(2):228−235 doi: 10.19303/j.issn.1008-0384.2021.02.014
引用本文: 张家康,庄雅玲,张力文,等. 水稻秸秆生物炭对3种土壤水溶态Cd动态变化的影响 [J]. 福建农业学报,2021,36(2):228−235 doi: 10.19303/j.issn.1008-0384.2021.02.014
ZHANG J K, ZHUAN Y L, ZHANG L W, et al. Effects of Rice Straw Biochar on Water-soluble Cd in Three Flooded Different Types of Soil [J]. Fujian Journal of Agricultural Sciences,2021,36(2):228−235 doi: 10.19303/j.issn.1008-0384.2021.02.014
Citation: ZHANG J K, ZHUAN Y L, ZHANG L W, et al. Effects of Rice Straw Biochar on Water-soluble Cd in Three Flooded Different Types of Soil [J]. Fujian Journal of Agricultural Sciences,2021,36(2):228−235 doi: 10.19303/j.issn.1008-0384.2021.02.014

水稻秸秆生物炭对3种土壤水溶态Cd动态变化的影响

doi: 10.19303/j.issn.1008-0384.2021.02.014
基金项目: 福建省高校杰出青年科研人才培育计划项目(2018);大学生创新创业项目(20191402051);福建省中青年教师教育科研项目(JAT190365);闽南师范大学校长基金项目(KJ18003)
详细信息
    作者简介:

    张家康(1999−),男,主要从事土壤重金属污染与修复研究(E-mail:1612987837@qq.com

    通讯作者:

    李荭荭(1990−),女,博士,副教授,研究方向:土壤环境化学研究(E-mail:879428026@qq.com

  • 中图分类号: X 53

Effects of Rice Straw Biochar on Water-soluble Cd in Three Flooded Different Types of Soil

  • 摘要:   目的   探讨淹水环境下生物炭对不同类型土壤中镉(Cd)的钝化效果,为生物炭修复镉污染稻田土壤提供科学依据。   方法   将外源Cd添加到黄壤、红壤性水稻土和棕壤中,分别设置对照和添加5%(W/W)生物炭处理,通过室内模拟试验探讨淹水条件下生物炭对不同土壤中Cd钝化效果的影响。   结果   淹水初期(1 d),与对照相比生物炭处理显著降低3种土壤溶液的pH值和土壤氧化还原电位值(Eh),但提高了土壤电导率值。随淹水时间增加,对照处理的3种土壤Eh值均逐渐降低,生物炭处理可使土壤氧化还原反应减缓。在淹水初期,对照处理下的3种土壤水溶态Cd含量由高到低依次为:黄壤(272.5 μg·L−1)>红壤性水稻土(23.48 μg·L−1)>棕壤(1.44 μg·L−1),生物炭处理的3种土壤水溶态Cd含量分别降低31.66%、75.04%和66.67%。随淹水时间增加,对照处理下黄壤和红壤性水稻土的水溶态Cd含量均逐渐降低,到淹水30 d时的降幅分别为89.34%和76.53%;而生物炭处理的水溶态Cd含量降低幅度较小,分别为85.41%和37.03%。淹水30 d之后,与对照处理相比,生物炭处理的黄壤、红壤性水稻土和棕壤有效态Cd含量分别降低17.3%、56.3%和12.4%。   结论   5%生物炭处理可显著降低3种土壤的水溶态Cd含量。但随淹水时间增加,3种土壤的对照处理与生物炭处理之间的水溶态Cd含量差值均缩小。淹水30 d后,与对照处理相比,生物炭对水稻土有效态Cd含量的降幅大于棕壤和黄壤。
  • 图  1  不同处理土壤溶液pH值随淹水时间的变化

    注:H-CK、S-CK、Z-CK分别为黄壤、水稻土和棕壤的对照处理,H-BC、S-BC、Z-BC分别为黄壤、水稻土和棕壤的生物炭处理,*表示不同处理间存在显著性差异(P<0.05),图24同。

    Figure  1.  Changes on soil pH under treatments

    Note: Respectively, H-CK, S-CK, and Z-CK are yellow, paddy, and brown soils without biochar addition, and H-BC, S-BC, and Z-BC are those with 5% addition of biochar; * indicates significant difference at P<0.05. Same for the following.

    图  2  不同处理土壤溶液EC值随淹水时间的变化

    Figure  2.  Changes on soil conductivity under treatments

    图  3  不同处理土壤溶液Eh值随淹水时间的变化

    Figure  3.  Changes on soil Eh under treatments

    图  4  不同处理土壤水溶态Cd含量随淹水时间的变化

    Figure  4.  Changes on soluble Cd content in soil under treatments

    图  5  淹水30 d时从不同土壤中用0.1 mol·L−1 CaCl2溶液提取的有效态Cd含量

    注:图中不同英文字母表示不同土壤间有效态镉含量差异显著(P<0.05),* 和 ** 分别表示生物炭处理与相应对照处理间有效态镉含量在a=0.05和a=0.01水平上差异显著。

    Figure  5.  Available Cd in soil extracted by 0.1 mol·L−1 CaCl2 solution after 30d flooding

    Note: Data with different letter on same treatment column indicate significant difference at P<0.05; * significantly different available Cd in control and biochar-added soils at P<0.05, and ** at P<0.01.

    图  6  淹水30 d时各处理土壤有效态Cd含量与土壤pH值之间的相关性

    Figure  6.  Correlation between available Cd and pH of soils under treatments after 30 d of flooding

    表  1  供试土壤基本理化性质

    Table  1.   Physiochemical properties of 3 types of soil

    土壤类型
    Soil type
    有效态镉
    available Cd/(mg·kg−1
    pHCEC/
    (cmol·kg−1
    有机质
    organic matter/(g·kg−1
    颗粒含量 Particle size distribution/%
    粉粒
    Silt
    砂粒
    Sand
    黏粒
    Clay
    黄壤 yellow soil 0.031 4.23 10.48 5.67 14.6 57.4 28.0
    水稻土 paddy soil 0.016 5.54 10.01 32.77 20.4 61.6 18.0
    棕壤 brown soil 0.009 8.16 18.71 41.34 33.4 55.1 11.6
    下载: 导出CSV

    表  2  不同类型土壤的水溶态Cd含量与土壤溶液的pH、EC和Eh值的相关性分析

    Table  2.   Correlation between soluble Cd and pH, EC, and Eh of 3 types of soil

    土壤类型
    Soil type
    对照处理 Control treatment生物炭处理 Biochar treatment
    pHECEhpHECEh
    黄壤 yellow soil −0.768* 0.365 0.646 0.873** 0.048 0.801*
    水稻土 paddy soil 0.692 0.046 0.836** −0.905** 0.092 0.469
    棕壤 brown soil −0.118 0.716* −0.519 0.468 0.814* 0.306
    注:* 表示P<0.05,达到显著相关;** 表示P<0.01,达到极显著相关;n=6。
    Note: * significant correlation at the 0.05 level(P<0.05);** extremely significant correlation at the 0.01 level(P<0.01), n=6.
    下载: 导出CSV
  • [1] LI Z Y, MA Z W, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment [J]. Science of the Total Environment, 2014, 468/469: 843−853. doi: 10.1016/j.scitotenv.2013.08.090
    [2] DU B Y, ZHOU J, LU B X, et al. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China [J]. Science of the Total Environment, 2020, 720: 137585. doi: 10.1016/j.scitotenv.2020.137585
    [3] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies [J]. Environmental Science and Technology, 2015, 49(2): 750−759. doi: 10.1021/es5047099
    [4] ZHANG A F, BIAN R J, LI L Q, et al. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy [J]. Environmental Science and Pollution Research, 2015, 22(23): 18977−18986. doi: 10.1007/s11356-015-4967-8
    [5] JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol [J]. Journal of Hazardous Materials, 2012, 229/230: 145−150. doi: 10.1016/j.jhazmat.2012.05.086
    [6] STEINER C, DAS K C, MELEAR N, et al. Reducing nitrogen loss during poultry litter composting using biochar [J]. Journal of Environmental Quality, 2010, 39(4): 1236−1242. doi: 10.2134/jeq2009.0337
    [7] SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[M]//DONALD L S: Advances in Agronomy. Amsterdam: Elsevier, 2010: 47-82.
    [8] HONG M F, ZHANG L M, TAN Z X, et al. Effect mechanism of biochar's zeta potential on farmland soil's cadmium immobilization [J]. Environmental Science and Pollution Research International, 2019, 26(19): 19738−19748. doi: 10.1007/s11356-019-05298-5
    [9] BIAN R J, CHEN D, LIU X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment [J]. Ecological Engineering, 2013, 58: 378−383. doi: 10.1016/j.ecoleng.2013.07.031
    [10] 刘高云. 有机物料对紫色土溶解性有机质及水稻镉累积的影响[D]. 重庆: 西南大学, 2019.

    LIU G Y. Effects of organic materials on dissolved organic matter in purple soil and cadmium accumulation in rice[D]. Chongqing: Southwest University, 2019. (in Chinese).
    [11] 王莹莹, 张昀, 张广才, 等. 北方典型水稻土有机质及其组分演变特征 [J]. 植物营养与肥料学报, 2019, 25(11):1900−1908. doi: 10.11674/zwyf.18488

    WANG Y Y, ZHANG Y, ZHANG G C, et al. Evolutionary characteristics of organic matter and its components in typical paddy soils in Northern China [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1900−1908.(in Chinese) doi: 10.11674/zwyf.18488
    [12] 张雯辉. 吉林前郭盐碱水田区土壤有机碳含量变化和温室气体排放规律研究[D]. 长春: 吉林大学, 2013.

    ZHANG W H. Study on the changes of soil organic carbon content and greenhouse gas emissions law in Jilin Qianguo saline-alkaline paddy field soil[D]. Changchun: Jilin University, 2013. (in Chinese).
    [13] 张丽敏, 徐明岗, 娄翼来, 等. 长期施肥下黄壤性水稻土有机碳组分变化特征 [J]. 中国农业科学, 2014, 19(19):3817−3825. doi: 10.3864/j.issn.0578-1752.2014.19.010

    ZHANG L M, XU M G, LOU Y L, et al. Changes in yellow paddy soil organic carbon fractions under long-term fertilization [J]. Scientia Agricultura Sinica, 2014, 19(19): 3817−3825.(in Chinese) doi: 10.3864/j.issn.0578-1752.2014.19.010
    [14] 李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析 [J]. 土壤学报, 2006, 43(1):46−52. doi: 10.3321/j.issn:0564-3929.2006.01.007

    LI Z P, WU D F. Organic C content at steady state and potential of C sequestration of paddy soils in subtropical China [J]. Acta Pedologica Sinica, 2006, 43(1): 46−52.(in Chinese) doi: 10.3321/j.issn:0564-3929.2006.01.007
    [15] 王金贵. 我国典型农田土壤中重金属镉的吸附—解吸特征研究[D]. 杨凌: 西北农林科技大学, 2012.

    WANG J G. Adsorption-desorption characteristics of cadmium in typical agricultural soils in China[D]. Yangling: Northwest Agricultural and Forestry University, 2012. (in Chinese).
    [16] 张增强, 张一平, 朱兆华, 等. 镉在土壤中释放的动力学特征研究 [J]. 西北农林科技大学学报(自然科学版), 2001, 29(1):63−67.

    ZHAGN Z Q, ZHANG Y P, ZHU Z H, et al. Study on the characteristics of kinetics of cadmium release in soil [J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2001, 29(1): 63−67.(in Chinese)
    [17] GUO J X, LI Y Y, HU C, et al. Ca-containing amendments to reduce the absorption and translocation of Pb in rice plants [J]. Science of the Total Environment, 2018, 637/638: 971−979. doi: 10.1016/j.scitotenv.2018.05.100
    [18] ZHENG R L, CAI C, LIANG J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings [J]. Chemosphere, 2012, 89(7): 856−862. doi: 10.1016/j.chemosphere.2012.05.008
    [19] MACKIE K A, MARHAN S, DITTERICH F, et al. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard [J]. Agriculture, Ecosystems Environment, 2015, 201: 58−69. doi: 10.1016/j.agee.2014.12.001
    [20] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 农业出版社, 1981.
    [21] YANG X, LIU J, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil [J]. Environmental Science and Pollution Research, 2016, 23: 974−984. doi: 10.1007/s11356-015-4233-0
    [22] 吴启堂. 环境土壤学[M]. 北京: 中国农业出版社, 2011.
    [23] 宗良纲, 徐晓炎. 土壤中镉的吸附解吸研究进展 [J]. 生态环境, 2003, 12(3):331−335.

    ZONG L G, XU X Y. Advance in studies of cadmium sorption and desorption in soils [J]. Ecology and Environment, 2003, 12(3): 331−335.(in Chinese)
    [24] 焦文涛, 蒋新, 余贵芬, 等. 土壤有机质对镉在土壤中吸附-解吸行为的影响 [J]. 环境化学, 2005, 24(5):545−549. doi: 10.3321/j.issn:0254-6108.2005.05.012

    JIAO W T, JIANG X, YU G F, et al. Effects of organic matter on cadmium adsorption-desorption in three soils [J]. Environmental Chemistry, 2005, 24(5): 545−549.(in Chinese) doi: 10.3321/j.issn:0254-6108.2005.05.012
    [25] 李兴菊, 王定勇, 叶展. 水溶性有机质对镉在土壤中吸附行为的影响 [J]. 水土保持学报, 2007, 21(2):159−162. doi: 10.3321/j.issn:1009-2242.2007.02.040

    LI X J, WANG D Y, YE Z. Cadmium adsorption in soil influenced by dissolved organic matters derived from pig manure and rice straw [J]. Journal of Soil and Water Conservation, 2007, 21(2): 159−162.(in Chinese) doi: 10.3321/j.issn:1009-2242.2007.02.040
    [26] GAO L Y, DENG J H, HUANG G F, et al. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge [J]. Bioresource Technology, 2019, 272: 114−122. doi: 10.1016/j.biortech.2018.09.138
    [27] SALETNIK B, ZAGULA G, GRABEK-LEJKO D, et al. Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) [J]. Environmental Earth Sciences, 2017, 76(16): 574. doi: 10.1007/s12665-017-6916-y
    [28] KUMAR R N, NAGENDRAN R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans [J]. Chemosphere, 2007, 66(9): 1775−1781. doi: 10.1016/j.chemosphere.2006.07.091
    [29] CHANG O H, VANCE N O, YONG G K, et al. Soil pH effect on phosphate induced cadmium precipitation in arable soil [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(1): 101−105. doi: 10.1007/s00128-014-1273-y
    [30] FAGERIA N K, CARVALHO G D, SANTOS A B, et al. Chemistry of lowland rice soils and nutrient availability [J]. Communications in Soil Science and Plant Analysis, 2011, 42(16): 1913−1933. doi: 10.1080/00103624.2011.591467
    [31] LI J H, WANG S L, ZHANG J M, et al. Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: Elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques [J]. Journal of Hazardous Materials, 2020, 389: 117−122.
    [32] LI H H, YU Y, CHEN Y H, et al. Biochar reduced soil extractable Cd but increased its accumulation in rice (Oryza sativa L.) cultivated on contaminated soils [J]. Journal of Soils and Sediments, 2019, 19(2): 862−871. doi: 10.1007/s11368-018-2072-6
    [33] 王丙烁, 黄亦玟, 李娟, 等. 不同改良剂和水分管理对水稻吸收积累砷的影响 [J]. 农业环境科学学报, 2019, 38(8):1835−1843. doi: 10.11654/jaes.2019-0585

    WANG B S, HUANG Y W, LI J, et al. Effect of different amendments and water management on arsenic uptake and accumulation by rice in arsenic contaminated soil [J]. Journal of Agro-Environment Science, 2019, 38(8): 1835−1843.(in Chinese) doi: 10.11654/jaes.2019-0585
    [34] YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution [J]. Chemosphere, 2011, 83(7): 925−932. doi: 10.1016/j.chemosphere.2011.02.044
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  193
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-12-01
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回