• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

怀玉山高山马铃薯蔗糖合酶基因的克隆和分析

洪森荣 邓雨晴 吴洪婷 陈婷 郭淑贞 杨于萱 蔡红 陈荣华

洪森荣,邓雨晴,吴洪婷,等. 怀玉山高山马铃薯蔗糖合酶基因的克隆和分析 [J]. 福建农业学报,2021,36(2):148−156 doi: 10.19303/j.issn.1008-0384.2021.02.003
引用本文: 洪森荣,邓雨晴,吴洪婷,等. 怀玉山高山马铃薯蔗糖合酶基因的克隆和分析 [J]. 福建农业学报,2021,36(2):148−156 doi: 10.19303/j.issn.1008-0384.2021.02.003
HONG S R, DENG Y Q, WU H T, et al. Cloning and Sequencing Sucrose Synthase Gene of Alpine Potato [J]. Fujian Journal of Agricultural Sciences,2021,36(2):148−156 doi: 10.19303/j.issn.1008-0384.2021.02.003
Citation: HONG S R, DENG Y Q, WU H T, et al. Cloning and Sequencing Sucrose Synthase Gene of Alpine Potato [J]. Fujian Journal of Agricultural Sciences,2021,36(2):148−156 doi: 10.19303/j.issn.1008-0384.2021.02.003

怀玉山高山马铃薯蔗糖合酶基因的克隆和分析

doi: 10.19303/j.issn.1008-0384.2021.02.003
基金项目: 江西省重点研发计划项目(20192BBF60006);江西省重点研发计划项目(20202BBF63001);上饶市科技局平台载体建设项目(2020I001);上饶市科技局平台载体建设项目(2019I017);江西省大学生创新创业训练计划项目(2020-CX-07)
详细信息
    作者简介:

    洪森荣(1974−),男,教授,主要从事植物生物技术研究(E-mail:hongsenrong@163.com

  • 中图分类号: S 532

Cloning and Sequencing Sucrose Synthase Gene of Alpine Potato

  • 摘要:   目的  蔗糖合酶是植物蔗糖代谢途径中的关键酶,在植物的生长发育过程中具有重要作用。分析蔗糖合酶的核酸序列信息,预测其蛋白结构与功能,以期揭示该酶生物学功能。  方法  通过怀玉山高山马铃薯(Solanum tuberosum L. cv. Huaiyushan,缩写S. tuberosum L. cv. Huaiyushan)试管苗转录组数据库筛选到蔗糖合酶基因的核心片段(PGSC0003DMG400002895,SuSy 4),利用RT-PCR 技术克隆怀玉山高山马铃薯蔗糖合酶基因,并采用生物信息学方法进行序列分析。  结果  怀玉山高山马铃薯蔗糖合酶基因cDNA总长度为2 418 bp,G+C 含量为45.08%;怀玉山高山马铃薯蔗糖合酶由805个氨基酸组成,分子量92 471.33 Da,等电点5.87,为亲水性蛋白;怀玉山高山马铃薯蔗糖合酶的二级结构包括α-螺旋(45.84%)、β -片层(15.16%)、无规则卷曲(39.01%),C端和N端含β -片层和α-螺旋,而无规则卷曲、延伸链、β -片层和α-螺旋则散布于整个蛋白质中;怀玉山高山马铃薯蔗糖合酶的三级结构为四聚体;怀玉山高山马铃薯蔗糖合酶主要存在细胞质、线粒体和叶绿体中;怀玉山高山马铃薯与番茄(Solanum lycopersicum)、潘那利番茄(Solanum pennellii)、智利番茄(Solanum chilense)、马铃薯(Solanum tuberosum)、辣椒(Capsicum annuum)、风铃辣椒(Capsicum baccatum)等6种植物在一个大分支下,这说明怀玉山高山马铃薯蔗糖合酶基因在进化上与这6种植物的亲缘关系较近,尤其是与马铃薯的进化上具有最高的亲缘关系。  结论  怀玉山高山马铃薯蔗糖合酶基因具有典型蔗糖合酶的结构特征,氨基酸序列及核酸序列与同源物种相似度高,在进化上高度保守,对进一步揭示该酶生物学功能具有重要意义。
  • 图  1  怀玉山高山马铃薯总RNA的电泳

    Figure  1.  Electrophoresis of total RNA from Alpine potato of Huaiyushan

    图  2  怀玉山高山马铃薯蔗糖合酶基因PCR扩增

    Figure  2.  PCR amplification of SuSy gene in Alpine potato of Huaiyushan

    图  3  怀玉山高山马铃薯蔗糖合酶基因碱基组成

    Figure  3.  Base composition of SuSy gene in Alpine potato of Huaiyushan

    图  4  怀玉山高山马铃薯蔗糖合酶蛋白氨基酸序列

    Figure  4.  Amino acid sequence of SuSy in Alpine potato of Huaiyushan

    图  5  怀玉山高山马铃薯蔗糖合酶蛋白亲疏水值分布

    Figure  5.  Distribution of relative and sparse water values of SuSy in Alpine potato of Huaiyushan

    图  6  怀玉山高山马铃薯蔗糖合酶二级结构

    注:大写字母代表氨基酸序列;小写字母h代表α-螺旋(Alpha helix),小写字母e代表延伸链(Extended strand),小写字母c代表无规则卷曲(Random coil)。

    Figure  6.  Secondary structure of SuSy in Alpine potato of Huaiyushan

    Note: the capital letter represents the amino acid sequence; the small letter H represents the alpha helix, the small letter E represents the extended strand, and the small letter C represents the random coil.

    图  7  怀玉山高山马铃薯蔗糖合酶二级结构各部分的比例

    注:蓝色代表α-螺旋;红色代表延伸链;紫色代表无规则卷曲。

    Figure  7.  Proportion of various parts in secondary structure of SuSy in Alpine potato of Huaiyushan

    Note: Blue represents α-helix; red, extended strand; and, purple, random coil.

    图  8  怀玉山高山马铃薯蔗糖合酶三级结构

    Figure  8.  Tertiary structure of SuSy in Alpine potato in Huaiyushan

    图  9  怀玉山高山马铃薯蔗糖合酶系统进化分析

    Figure  9.  Phylogenetic analysis of SuSy in Alpine potato of Huaiyushan

    表  1  怀玉山高山马铃薯蔗糖合酶蛋白各氨基酸的数目和比例

    Table  1.   Number and proportion of amino acids of SuSy in Alpine potato of Huaiyushan

    氨基酸种类
    Types of amino acids
    数目
    Number
    比例
    Proportion/%
    Ala(A) 56 7.0
    Arg(R) 44 5.5
    Asn(N) 30 3.7
    Asp(D) 39 4.8
    Cys(C) 7 0.9
    Gln(Q) 22 2.7
    Glu(E) 75 9.3
    Gly(G) 46 5.7
    His(H) 28 3.5
    Ile(I) 48 6.0
    Leu(L) 89 11.1
    Lys(K) 51 6.3
    Met(M) 22 2.7
    Phe(F) 41 5.1
    Pro(P) 35 4.3
    Ser(S) 36 4.5
    Thr(T) 41 5.1
    Trp(W) 11 1.4
    Tyr(Y) 31 3.9
    Val(V) 53 6.6
    下载: 导出CSV
  • [1] NAVARRO C, ABELENDA J A, CRUZ-ORÓ E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T [J]. Nature, 2011, 478(7367): 119−122. doi: 10.1038/nature10431
    [2] ANITHAKUMARI A M, NATARAJA K N, VISSER R G F, et al. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population [J]. Molecular Breeding, 2012, 30(3): 1413−1429. doi: 10.1007/s11032-012-9728-5
    [3] CHISENGA S M, WORKNEH T S, BULTOSA G, et al. Progress in research and applications of cassava flour and starch: a review [J]. Journal of Food Science and Technology, 2019, 56(6): 2799−2813. doi: 10.1007/s13197-019-03814-6
    [4] 姚志, 谢云. 主粮化背景下高山马铃薯产业化困境研究——以恩施市为例 [J]. 长江大学学报(自然科学版), 2016, 13(3):54−56.

    YAO Z, XIE Y. Study on the strategy of main grain of potato: a review on the dilemma of industrialization of high mountain potato under the background of main grain—Take Enshi as an example [J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(3): 54−56.(in Chinese)
    [5] 尹明华, 谭鑫, 郑亚娇, 等. 高海拔生境下怀玉山高山马铃薯和怀玉山本土农家薯块茎的转录组分析 [J]. 核农学报, 2019, 33(7):1330−1339. doi: 10.11869/j.issn.100-8551.2019.07.1330

    YIN M H, TAN X, ZHENG Y J, et al. The transcriptome analysis of alpine potato tuber and local farm potato tuber in Huaiyushan under high altitude habitats [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1330−1339.(in Chinese) doi: 10.11869/j.issn.100-8551.2019.07.1330
    [6] 尹明华, 叶思雨, 宁本松, 等. 高山马铃薯脱毒苗DNA甲基化的MSAP分析 [J]. 核农学报, 2019, 33(6):1079−1087. doi: 10.11869/j.issn.100-8551.2019.06.1079

    YIN M H, YE S Y, NING B S, et al. MSAP analysis of genomic DNA methylation in virus-free plantlets of alpine potato [J]. Acta Agriculturae Nucleatae Sinica, 2019, 33(6): 1079−1087.(in Chinese) doi: 10.11869/j.issn.100-8551.2019.06.1079
    [7] BERÜTER J, FEUSI M E S, RÜEDI P. Sorbitol and sucrose partitioning in the growing apple fruit [J]. Journal of Plant Physiology, 1997, 151(3): 269−276. doi: 10.1016/S0176-1617(97)80252-0
    [8] FUJII S, HAYASHI T, MIZUNO K. Sucrose synthase is an integral component of the cellulose synthesis machinery [J]. Plant and Cell Physiology, 2010, 51(2): 294−301. doi: 10.1093/pcp/pcp190
    [9] COLEMAN H D, YAN J, MANSFIELD S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 13118−13123. doi: 10.1073/pnas.0900188106
    [10] LI P H, DONG X Y, WANG Y Z, et al. Activity and subcellular localization of sucrose synthase in ‘starkrimson’ apple during fruit development [J]. Acta Horticulturae Sinica, 2002, 29(4):375−377.
    [11] 燕雪芬, 李玉萍, 张海纳, 等. 苦荞蔗糖合酶基因克隆及序列分析 [J]. 西北农业学报, 2015, 24(11):80−86.

    YAN X F, LI Y P, ZHANG H N, et al. Cloning and sequence analysis of sucrose synthase gene (SuSy) from Fagopyrum tataricum [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(11): 80−86.(in Chinese)
    [12] 王佳, 季乐翔, 陈仲, 等. 毛白杨蔗糖合酶基因PtSS2克隆与表达分析 [J]. 西北植物学报, 2013, 33(8):1501−1507.

    WANG J, JI L X, CHEN Z, et al. Molecular cloning and expression patterns of PtSS2 from Populus tomentosa [J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1501−1507.(in Chinese)
    [13] 方开星, 陈新, 王海燕, 等. 木薯蔗糖合酶(SuSy)基因的表达分析及SuSy1SuSy4编码序列的克隆 [J]. 热带作物学报, 2014, 35(10):1937−1943. doi: 10.3969/j.issn.1000-2561.2014.10.010

    FANG K X, CHEN X, WANG H Y, et al. Expression analysis of sucrose synthase in Cassava and cloning of SuSy1 and SuSy4 coding sequences [J]. Chinese Journal of Tropical Crops, 2014, 35(10): 1937−1943.(in Chinese) doi: 10.3969/j.issn.1000-2561.2014.10.010
    [14] 罗才林, 徐德林, 钱刚, 等. 白及蔗糖合酶基因结构与功能的生物信息学分析 [J]. 遵义医学院学报, 2018, 41(2):170−175. doi: 10.3969/j.issn.1000-2715.2018.02.010

    LUO C L, XU D L, QIAN G, et al. Bioinformatic analysis of the structure and function of sucrose synthase gene in Bletilla striata [J]. Acta Academiae Medicinae Zunyi, 2018, 41(2): 170−175.(in Chinese) doi: 10.3969/j.issn.1000-2715.2018.02.010
    [15] 尹明华, 王钦, 张红蕾, 等. 高海拔生境下怀玉山高山马铃薯和本土农家薯的全基因组重测序分析 [J]. 基因组学与应用生物学, 2020, 39(3):1198−1207.

    YIN M H, WANG Q, ZHANG H L, et al. Whole genome re-sequencing analysis of alpine potato and local farm potato in Huaiyu Mountain under high altitude habitats [J]. Genomics and Applied Biology, 2020, 39(3): 1198−1207.(in Chinese)
    [16] 洪森荣, 张铭心, 叶思雨, 等. 高山马铃薯种质资源遗传多样性的同工酶分析 [J]. 浙江农业学报, 2018, 30(9):1445−1453. doi: 10.3969/j.issn.1004-1524.2018.09.01

    HONG S R, ZHANG M X, YE S Y, et al. Genetic diversity analysis of alpine potato germplasm resources by isozyme [J]. Acta Agriculturae Zhejiangensis, 2018, 30(9): 1445−1453.(in Chinese) doi: 10.3969/j.issn.1004-1524.2018.09.01
    [17] 尹明华, 李远芳, 郁雪婷, 等. 怀玉山高山马铃薯不同脱毒方法效果比较 [J]. 分子植物育种, 2019, 17(15):5074−5080.

    YIN M H, LI Y F, YU X T, et al. Comparison of the effects of different virus-free methods on Huaiyushan alpine potato [J]. Molecular Plant Breeding, 2019, 17(15): 5074−5080.(in Chinese)
    [18] 尹明华, 刘燕, 郁雪婷, 等. 怀玉山高山马铃薯茎尖再生苗6种病毒的DAS-ELISA检测与分析 [J]. 浙江农业学报, 2017, 29(10):1699−1705. doi: 10.3969/j.issn.1004-1524.2017.10.15

    YIN M H, LIU Y, YU X T, et al. DAS-ELISA detection and analysis of six kinds of viruses in plantlets regenerated from Huaiyushan high mountain potato shoot-tips [J]. Acta Agriculturae Zhejiangensis,, 2017, 29(10): 1699−1705.(in Chinese) doi: 10.3969/j.issn.1004-1524.2017.10.15
    [19] 张林, 徐德林, 储士润, 等. 千里光β-微管蛋白基因结构与功能的生物信息学分析 [J]. 植物科学学报, 2014, 32(5):487−492. doi: 10.11913/PSJ.2095-0837.2014.50487

    ZHANG L, XU D L, CHU S R, et al. Bioinformatic analysis of tubulin-beta gene in Senecio scandens Buch. -Ham. ex D. Don [J]. Plant Science Journal, 2014, 32(5): 487−492.(in Chinese) doi: 10.11913/PSJ.2095-0837.2014.50487
    [20] GEIGENBERGER P, STITT M. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues [J]. Planta, 1993, 189(3): 329−339. doi: 10.1007/BF00194429
    [21] FU H, PARK W D. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato [J]. The Plant Cell, 1995, 7(9): 1369−1385.
    [22] BAIER M C, KECK M, GÖDDE V, et al. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula [J]. Plant Physiology, 2010, 152(2): 1000−1014. doi: 10.1104/pp.109.149898
    [23] XU S M, BRILL E, LLEWELLYN D J, et al. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production [J]. Molecular Plant, 2012, 5(2): 430−441. doi: 10.1093/mp/ssr090
    [24] KIM H S, JEON J H, CHOI K H, et al. Regulation of starch contents in potato(Solanum tuberosum L.) by manipulation of sucrose synthase gene [J]. Engei Gakkai Zasshi, 2000, 69(3): 243−249. doi: 10.2503/jjshs.69.243
    [25] 柴静, 张会, 姚丽丽, 等. 蔗糖合酶在植物生长发育中的作用研究 [J]. 生命科学, 2012, 24(1):81−88.

    CHAI J, ZHANG H, YAO L L, et al. The function of sucrose synthase in plant growth and development [J]. Chinese Bulletin of Life Sciences, 2012, 24(1): 81−88.(in Chinese)
    [26] FU H, KIM S Y, PARK W D. High-level Tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron [J]. The Plant Cell, 1995, 7(9): 1387−1394.
    [27] SALANOUBAT M, BELLIARD G. Molecular cloning and sequencing of sucrose synthase cDNA from potato (Solanum tuberosum L.): preliminary characterization of sucrose synthase mRNA distribution [J]. Gene, 1987, 60(1): 47−56. doi: 10.1016/0378-1119(87)90212-5
    [28] ZHENG Y, ANDERSON S, ZHANG Y F, et al. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications [J]. Journal of Biological Chemistry, 2011, 286(41): 36108−36118. doi: 10.1074/jbc.M111.275974
    [29] HARDIN S C, HUBER S C. Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves [J]. Plant Physiology and Biochemistry, 2004, 42(3): 197−208. doi: 10.1016/j.plaphy.2003.12.004
    [30] SUBBAIAH C C, PALANIAPPAN A, DUNCAN K, et al. Mitochondrial localization and putative signaling function of sucrose synthase in maize [J]. Journal of Biological Chemistry, 2006, 281(23): 15625−15635. doi: 10.1074/jbc.M600355200
    [31] VERMERRIS W, VREUGDENHIL D, VISSER R G F. mRNA localization in in vitro grown microtubers of potatoas a tool to study starch metabolism [J]. Plant Physiology and Biochemistry, 2001, 39(2): 161−166. doi: 10.1016/S0981-9428(00)01222-5
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  180
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-06-25
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回