• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四季秋海棠BsMYB62基因酵母双杂交诱饵载体的构建及互作蛋白的筛选

刘静 王阳 姚珂心 屈莹 王瑞博 刘胜男 李永华 张开明

刘静,王阳,姚珂心,等. 四季秋海棠 BsMYB62基因酵母双杂交诱饵载体的构建及互作蛋白的筛选 [J]. 福建农业学报,2021,36(4):418−425 doi: 10.19303/j.issn.1008-0384.2021.04.006
引用本文: 刘静,王阳,姚珂心,等. 四季秋海棠 BsMYB62 基因酵母双杂交诱饵载体的构建及互作蛋白的筛选 [J]. 福建农业学报,2021,36(4):418−425 doi: 10.19303/j.issn.1008-0384.2021.04.006
LIU J, WANG Y, YAO K X, et al. Construction of Yeast Two-hybrid Bait Vector and Identification of Proteins Interacting with BsMYB62 in Begonia semperflorens [J]. Fujian Journal of Agricultural Sciences,2021,36(4):418−425 doi: 10.19303/j.issn.1008-0384.2021.04.006
Citation: LIU J, WANG Y, YAO K X, et al. Construction of Yeast Two-hybrid Bait Vector and Identification of Proteins Interacting with BsMYB62 in Begonia semperflorens [J]. Fujian Journal of Agricultural Sciences,2021,36(4):418−425 doi: 10.19303/j.issn.1008-0384.2021.04.006

四季秋海棠BsMYB62基因酵母双杂交诱饵载体的构建及互作蛋白的筛选

doi: 10.19303/j.issn.1008-0384.2021.04.006
基金项目: 河南省自然科学基金培育项目(182300410091)
详细信息
    作者简介:

    刘静(1997−),女,硕士研究生,研究方向:园林植物生长发育与调控(E-mail:liujing9223@126.com

    并列第一作者:王阳(1995−),男,硕士研究生,研究方向:园林植物生长发育与调控(E-mail:wangyang1995@stu.henau.edu.cn

    通讯作者:

    张开明(1978−),女,博士,教授,研究方向:园林植物生长发育与调控(E-mail:miss1199@126.com

  • 中图分类号: S 682.19

Construction of Yeast Two-hybrid Bait Vector and Identification of Proteins Interacting with BsMYB62 in Begonia semperflorens

  • 摘要:   目的  低温和高光均能引起四季秋海棠(Begonia semperflorens)叶片因合成积累花色素苷而变红。本研究从低温和高光处理四季秋海棠的转录组中筛选并克隆得到1个 MYB 转录因子基因并命名为 BsMYB62 ,对其进行生物学信息分析,并从四季秋海棠cDNA文库中筛选出与其互作的蛋白。  方法  设计BsMYB62引物,克隆 BsMYB62 CDS区,利用生物信息学软件对BsMYB62基因序列及其编码蛋白序列分析。构建 pGBKT7-BsMYB62 酵母双杂交诱饵载体,对该诱饵载体进行毒性和自激活检测后, 用 Mating 法筛选BsMYB62的互作蛋白。  结果   BsMYB62 基因的 CDS 区为 801 bp(NCBI 登录号:MT560845),编码266个氨基酸。 pGBKT7-BsMYB62 有自激活现象 ,对宿主酵母菌无毒性。在含 45mM 3-AT 的 SD/-Trp-Leu-His-Ade 培养基上能明显抑制 BsMYB62 蛋白的自激活。酵母双杂交结果显示与 BsMYB62 蛋白互作的蛋白有 9 类,分别是 XTH9、LHB1B2、EBS7、PSI-F、UBE2、FDH、RBCS1A、FP6 和 BCA。  结论  推测四季秋海棠BsMYB62 蛋白与以上9类蛋白互作响应低温、高光胁迫。
  • 图  1  BsMYB62 CDS区的克隆及SMART分析

    注:A:BsMYB62扩增产物琼脂糖凝胶电泳检测 (M:DL2000 DNA Marker,1~2:阳性克隆);B:BsMYB62编码蛋白保守结构的预测

    Figure  1.  Cloning and SMART analysis of CDS region in BsMYB62

    Note: A: Agarose gel electrophoresis of PCR products of BsMYB62 (M: DL2000 DNA Marker; 1~2: positive clone ); B: Prediction of conserved structure of BsMYB62 encoding protein

    图  2  诱饵载体pGBKT7-BsMYB62 的分子鉴定

    注:A: 带酶切位点片段的鉴定(M: DL2000 DNA Marker); B: 质粒菌液PCR鉴定

    Figure  2.  Molecular identification of bait vector pGBKT7-BsMYB62

    Note: A: Identification of fragments with restriction sites (M: DL2000 DNA Marker) ; B: PCR identification of plasmid bacteria

    图  3  pGBKT7-BsMYB62 在SD/-Trp培养基上的毒性鉴定

    注:A: pGBKT7载体 B: pGBKT7-BsMYB62载体

    Figure  3.  Determination of pGBKT7-BsMYB62 toxicity on SD/-Trp medium

    Note: A: pGBKT7 vector B: pGBKT7-BsMYB62 vector

    图  4  诱饵蛋白pGBKT7-BsMYB62 的自激活检测

    Figure  4.  Auto-activation detection of bait protein pGBKT7-BsMYB62

    图  5  抑制pGBKT7-BsMYB62 载体自激活的3-AT浓度筛选

    注:A: 3-AT浓度的初步筛选;B; 3-AT浓度的优化

    Figure  5.  Selection of 3-AT concentration for testing auto-activation inhibition of pGBKT7-BsMYB62

    Note: A: Preliminary screening of 3-At concentration; B: 3-AT concentration optimization

    图  6  阳性酵母菌液PCR产物电泳图结果

    Figure  6.  Electrophoresis of PCR product from positive yeast liquid

    表  1  引物序列

    Table  1.   Primer sequences

    引物名称
    Primer name
    引物序列(5'-3')  
    Primer sequence(5'-3')  
    用途
    purpose
    BsMYB62-1F ATGGCTGCGTCATCTTCATCTA BsMYB62基因CDS区克隆 Cloning of BsMYB62 CDS region
    BsMYB62-1R TCACCATAGCTCATAACTGTTCCAC
    BsMYB62-in-F CATGGAGGCCGAATTCATGGCTGCGTCATCTTCATCTA 引入酶切位点 Add restriction site
    BsMYB62-in-R GCAGGTCGACGGATCCTCACCATAGCTCATAACTGTTCCAC 引入酶切位点 Add restriction site
    下载: 导出CSV

    表  2  阳性互作蛋白比对结果

    Table  2.   Alignment of positive interacting proteins

    编号
    Number
    类型
    Description
    长度
    Length/ bp
    生物进程
    Biological Process
    分子功能
    Molecular Function
    1 木葡聚糖内转糖酶/水解酶9
    Xyloglucan endotransglucosylase/hydrolase 9(XTH9)
    1090 细胞壁生物发生,木葡聚糖代谢过程
    cell wall biogenesis, xyloglucan metabolic process
    水解酶活性,水解O -糖基化合物,木葡聚糖:木糖基转移酶活性
    hydrolase activity, hydrolyzing O-glycosyl compounds, xyloglucan:xyloglucosyl transferase activity
    2 光合系统Ⅱ
    Photosystem II lightharvesting complex geneB1B2(LHB1B2)
    972 光合作用,光系统I中的光收集,光合作用,光系统II中的光收集,对光刺激的响应
    photosynthesis, light harvesting in photosystem I, photosynthesis, light harvesting in photosystem II, response to light stimulus
    叶绿素结合 chlorophyll binding
    3 949
    4 952
    5 甲烷磺酸乙酯诱变的油菜素甾体不敏感1抑制剂
    Ethylmethanesulfonate-mutagenized brassinosteroid-insensitive 1 supperssor 7(EBS7)
    1037 ERAD途径 ERAD pathway 蛋白结合 protein binding
    6 光系统I亚基 FPhotosystem I
    subunit F(PSI-F)
    941 编码光系统Ⅰ的F亚基
    encodes subunit F of photosystem I
    7 泛素结合酶E2
    Ubiquitin conjugating enzyme E2(UBE2)
    876 蛋白多泛素化,蛋白泛素化,泛素依赖的蛋白分解代谢过程
    protein polyubiquitination, protein ubiquitination, ubiquitin-dependent protein catabolic process
    泛素结合酶活性,泛素-蛋白转移酶活性
    ubiquitin conjugating enzyme activity, ubiquitin-protein transferase activity
    8 甲酸脱氢酶
    Formate dehydrogenase(FDH)
    1057 甲酸分解过程,对镉离子的反应,对创伤的反应
    formate catabolic process, response to cadmium ion, response to wounding
    NAD结合,甲酸脱氢酶(NAD +)活性,氧化还原酶活性,作用于CH-OH基团的供体,NAD或NADP作为受体
    NAD binding, formate dehydrogenase (NAD+) activity, oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
    9 核糖二磷酸羧化酶小链1A
    Ribulose bisphosphate carboxylase small chain 1A(RBCS1A)
    914 叶绿体核酮糖二磷酸羧化酶复合体组装,光合作用,响应冷害
    chloroplast ribulose bisphosphate carboxylasecomplex assembly, photosynthesis,response to cold
    核酮糖-二磷酸羧化酶活性
    ribulose-bisphosphate carboxylase activity
    10 856
    11 法尼基化蛋白
    6Farnesylated protein 6(FP6)
    711 bp 热适应,金属离子迁移
    heat acclimation, metal ion transport
    镉离子结合,铜离子结合,铅离子结合,蛋白质结合
    cadmium ion binding, copper ion binding, lead ion binding, protein binding
    12 β-碳酸酐酶4
    Beta carbonic anhydrase 4(BCA4)
    1063 bp 碳利用,氰酸盐分解代谢过程,气孔复合体发育的负调控,气孔运动的调控,对二氧化碳的响应
    carbon utilization, cyanate catabolic process, negative regulation of stomatal complex development, regulation of stomatal movement, response to carbon dioxide
    碳酸盐脱水酶活性,蛋白质结合,锌离子结合
    carbonate dehydratase activity, protein binding, zinc ion binding
    下载: 导出CSV
  • [1] 张雅茹, 李姝颖. 北京市春秋两季节日花坛应用对比与分析 [J]. 现代园艺, 2019(4):149−150. doi: 10.3969/j.issn.1006-4958.2019.04.099

    ZHANG Y R, LI S Y. Xiandai Horticulture [J]. Xiandai Horticulture, 2019(4): 149−150.(in Chinese) doi: 10.3969/j.issn.1006-4958.2019.04.099
    [2] 郭弘光, 吴繁花. MYB转录因子功能与调控研究进展 [J]. 安徽农业科学, 2012, 40(20):10381−10383, 10516. doi: 10.3969/j.issn.0517-6611.2012.20.009

    GUO H G, WU F H. Advance in the studies on the regulation and functions of plant MYB transcription factors [J]. Journal of Anhui Agricultural Sciences, 2012, 40(20): 10381−10383, 10516.(in Chinese) doi: 10.3969/j.issn.0517-6611.2012.20.009
    [3] 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展 [J]. 浙江农业学报, 2020, 32(7):1317−1328. doi: 10.3969/j.issn.1004-1524.2020.07.21

    QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317−1328.(in Chinese) doi: 10.3969/j.issn.1004-1524.2020.07.21
    [4] 王春荣. 葡萄上盐诱导的R2R3-MYB转录因子筛选及VvMYB62的抗盐功能鉴定[D]. 泰安: 山东农业大学, 2014.

    WANG C R. Screening of salt-induced R2R3-MYB transcription factors and function identification of VvMYB62in grapevine[D]. Taian, China: Shandong Agricultural University, 2014. (in Chinese).
    [5] DEVAIAH B N, MADHUVANTHI R, KARTHIKEYAN A S, et al. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis [J]. Molecular Plant, 2009, 2(1): 43−58. doi: 10.1093/mp/ssn081
    [6] 陆燕茜, 张冬, 王立丰, 等. 巴西橡胶树HbMYB62转录因子基因的克隆和表达分析 [J]. 植物研究, 2017, 37(6):953−960, 969. doi: 10.7525/j.issn.1673-5102.2017.06.020

    LU Y X, ZHANG D, WANG L F, et al. Cloning and expressional analysis of HbMYB62 under multi-stimulation in Hevea brasiliensis muell. arg [J]. Bulletin of Botanical Research, 2017, 37(6): 953−960, 969.(in Chinese) doi: 10.7525/j.issn.1673-5102.2017.06.020
    [7] 屈莹, 谢久凤, 王珂, 等. 低温及光照对四季秋海棠叶片花色素苷合成的诱导及调控机理 [J]. 河南农业大学学报, 2018, 52(3):342−349.

    QU Y, XIE J F, WANG K, et al. Induction and regulation mechanism of low temperature and light on anthocyanin biosynthesis in leaves of Begonia semperflorens [J]. Journal of Henan Agricultural University, 2018, 52(3): 342−349.(in Chinese)
    [8] 刘长仁. 利用酵母双杂交技术筛选拟南芥AtGRP7基因的互作蛋白[D]. 海口: 海南大学, 2012.

    LIU C R. Screening AtGRP7Interacted proteins from Arabidopsis thaliana using yeast two-hybrid technology[D]. Haikou: Hainan University, 2012. (in Chinese).
    [9] 高凌云. 西瓜低温响应MYB(Cla007586)转录因子的功能鉴定及互作蛋白分析[D]. 武汉: 华中农业大学, 2016.

    GAO L Y. Functional identification and interacting proteins analysis of A low temperature responsive MYB transcription factor Cla007586 from watermelon[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese).
    [10] 王怀琴, 郭晓荣, 杨新兵, 等. 利用酵母双杂交筛选与丹参R2R3-MYB类转录因子SmPAP1互作的蛋白 [J]. 基因组学与应用生物学, 2016, 35(10):2819−2826.

    WANG H Q, GUO X R, YANG X B, et al. Screening of the proteins interacting with SmPAP1 of R2R3-MYB transcription factor from Salvia miltiorrhiza bunge by yeast two-hybrid system [J]. Genomics and Applied Biology, 2016, 35(10): 2819−2826.(in Chinese)
    [11] 陈悰. 苎麻XTH家族基因克隆及表达分析[D]. 武汉: 华中农业大学, 2017.

    CHEN C. Cloning and expression profiling of XTH family genes in ramie[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese).
    [12] LIU Y D, ZHANG C C, WANG D H, et al. EBS7 is a plant-specific component of a highly conserved endoplasmic Reticulum-associated degradation system in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(39): 12205−12210. doi: 10.1073/pnas.1511724112
    [13] HALDRUP A, SIMPSON D J, SCHELLER H V. Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function [J]. The Journal of Biological Chemistry, 2000, 275(40): 31211−31218. doi: 10.1074/jbc.M002933200
    [14] 黄海杰, 陈雄庭. 植物泛素/26S蛋白酶体途径研究进展 [J]. 中国生物工程杂志, 2008(7):127−132.

    HUANG H J, CHEN X T. The progress on the ubiquitin 26S proteasome pathway in plants [J]. China Biotechnology, 2008(7): 127−132.(in Chinese)
    [15] 侯学文, 郭勇. 泛肽与植物逆境响应 [J]. 植物生理学通讯, 1998(6):474−478.

    HOU X W, GUO Y. Ubiquitin and Responses of Plant to Stress [J]. Plant Physiology Communications, 1998(6): 474−478.(in Chinese)
    [16] 徐晨曦, 姜静, 刘甜甜, 等. 柽柳泛素结合酶基因(E2s)的序列分析及功能验证 [J]. 东北林业大学学报, 2007(11):1−4. doi: 10.3969/j.issn.1000-5382.2007.11.001

    XU C X, JIANG J, LIU T T, et al. Sequence analysis and function determination of E2s gene from Tamarix androssowii [J]. Journal of Northeast Forestry University, 2007(11): 1−4.(in Chinese) doi: 10.3969/j.issn.1000-5382.2007.11.001
    [17] 李丽. 拟指数流加补料高密度培养重组E. coli产甲酸脱氢酶[D]. 杭州: 浙江大学, 2010.

    LI L. Ehanced production of recombinant formate dehydrogenase with pseudo-exponential fed-batch cultivation[D]. HangZhou: Zhejiang University, 2010.
    [18] HOURTON-CABASSA C, AMBARD-BRETTEVILLE F, MOREAU F, et al. Stress induction of mitochondrial formate dehydrogenase in potato leaves [J]. Plant Physiology, 1998, 116(2): 627−635. doi: 10.1104/pp.116.2.627
    [19] LI R, BONHAM-SMITH P C, KING J. Molecular characterization and regulation of formate dehydrogenase in Arabidopsis thaliana [J]. Canadian Journal of Botany, 2001, 79(7): 796−804. doi: 10.1139/b01-056
    [20] IZUMI M, TSUNODA H, SUZUKI Y, et al. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity [J]. Journal of Experimental Botany, 2012, 63(5): 2159−2170. doi: 10.1093/jxb/err434
    [21] 宫宇, 魏建华, 张少斌, 等. 酵母双杂交筛选与杨树Subgroup 4 MYB转录因子相互作用的蛋白质 [J]. 广东农业科学, 2014, 41(11):157−162. doi: 10.3969/j.issn.1004-874X.2014.11.035

    GONG Y, WEI J H, ZHANG S B, et al. Identification of Subgroup 4 MYB transcription factor-interactive proteins using yeast two-hybrid system [J]. Guangdong Agricultural Sciences, 2014, 41(11): 157−162.(in Chinese) doi: 10.3969/j.issn.1004-874X.2014.11.035
    [22] MARINO D, FROIDURE S, CANONNE J, et al. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence [J]. Nature Communications, 2013, 4: 1476. doi: 10.1038/ncomms2479
    [23] 杨若韵, 陈雯, 薛璟祺, 等. 月季切花乙烯受体RhETR3互作蛋白RhTSPO1的筛选和鉴定 [J]. 园艺学报, 2014, 41(6):1157−1166.

    YANG R Y, CHEN W, XUE J Q, et al. Screening and identification of RhTSPO1, an interacting protein of ethylene receptor RhETR3 in cut roses [J]. Acta Horticulturae Sinica, 2014, 41(6): 1157−1166.(in Chinese)
    [24] 杨静园, 阮孟斌, 郭鑫, 等. 木薯MeMYB2转录因子特性及功能分析 [J]. 热带作物学报, 2021, 42(4):936−944.

    ANG J Y, RUAN M B, GUO X, et a. Characterization and Function Analysis of Cassava MYB Transcription Factor MeMYB2. [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 936−944.(in Chinese)
    [25] LI C H, QIU J, HUANG S R, et al. AaMYB3 interacts with AabHLH1 to regulate proanthocyanidin accumulation in Anthurium andraeanum (Hort.)—another strategy to modulate pigmentation [J]. Horticulture Research, 2019, 6(1): 1−16. doi: 10.1038/s41438-018-0102-6
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  404
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回