• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
XU G C, LUO W B, LI H W, et al. Light Response Model and Photosynthetic Parameters of Colored Potatoes [J]. Fujian Journal of Agricultural Sciences,2020,35(7):691−698 doi: 10.19303/j.issn.1008-0384.2020.07.001
Citation: XU G C, LUO W B, LI H W, et al. Light Response Model and Photosynthetic Parameters of Colored Potatoes [J]. Fujian Journal of Agricultural Sciences,2020,35(7):691−698 doi: 10.19303/j.issn.1008-0384.2020.07.001

Light Response Model and Photosynthetic Parameters of Colored Potatoes

doi: 10.19303/j.issn.1008-0384.2020.07.001
  • Received Date: 2020-04-07
  • Rev Recd Date: 2020-06-16
  • Publish Date: 2020-07-31
  •   Objective   Light responses of potato plants bearing colored tubers were studied.   Method   Gas exchanges of potato leaves on 2 common varieties of yellow and white tubers and 4 of different colored tubers were determined. Collected data were fitted to the simulation models of rectangular hyperbola (RH), non-rectangular hyperbola (NRH), modified rectangular hyperbolic (MRH), and exponential function (EM). Photosynthetic parameters including maximum photosynthetic rate (Pn-max), light saturation point (LSP), light compensation point (LCP), dark respiration rate (Rd), and apparent quantum yield (AQY) on the plants were analyzed.   Result  (1) All 4 models could adequately simulate the responses under low light, and RH, NRH, and EM failed to predict on photoinhibition. On the other hand, MRH accurately covered the entire light spectrum with a correlation coefficient (R2) greater than 0.99, as well as the smallest root mean square error and mean absolute error, among all models. (2) Pn-max of the colored potatoes were lower than those of the common varieties. They were 6.7%–34.2% lower than that of Favorita and 14.8%–40.0% than that of Minshu 1. Aside from Hongmei, the other 3 colored potatoes showed LSP below 1 000 μmol·m−2·s−1, which was much less than those of the common varieties. No significant difference on the utilization under low light by the two categories of potatoes was observed. (3) Among the 4 colored varieties, Hongmei had the highest Pn-max and LSP, but lowest on the ability to use low light, while Mincaishu 3 exhibited the highest low light utilization. (4) The light response processes of stomatal conductance (Gs) and transpiration rate (Tr) were similar to that of net photosynthetic rate (Pn). They rose rapidly as the light intensity increased and then leveled off or declined. In contrast, the intercellular CO2 concentration (Ci) showed a sharp decline before stabilization.   Conclusion  The Pn-max and LSP of potato varieties that bore colored tubers were significantly lower than those of the common varieties indicating a lower photosynthetic potential and apparent photoinhibition. The information might lead to improved breeding and cultivation practices of colored potatoes.
  • loading
  • [1]
    罗文彬, 李华伟, 许国春, 等. 彩色马铃薯种质资源的引进与评价 [J]. 福建农业学报, 2019, 34(3):278−283.

    LUO W B, LI H W, XU G C, et al. Introduction and evaluation of colored potato germplasms [J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 278−283.(in Chinese)
    [2]
    仇菊, 朱宏, 刘鹏, 等. 我国彩色马铃薯主栽品种的营养成分分析 [J]. 中国食物与营养, 2018, 24(11):10−14. doi: 10.3969/j.issn.1006-9577.2018.11.002

    QIU J, ZHU H, LIU P, et al. Analysis on nutrients of main cultivars of colored fleshed potatoes in China [J]. Food and Nutrition in China, 2018, 24(11): 10−14.(in Chinese) doi: 10.3969/j.issn.1006-9577.2018.11.002
    [3]
    LACHMAN J, HAMOUZ K, ORSÁK M, et al. Impact of selected factors - Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes [J]. Food Chemistry, 2012, 133(4): 1107−1116. doi: 10.1016/j.foodchem.2011.07.077
    [4]
    HAN K H, SHIMADA K I, SEKIKAWA M, et al. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats [J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(5): 1356−1359. doi: 10.1271/bbb.70060
    [5]
    WANG Q Y, CHEN Q, HE M L, et al. Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells [J]. Nutrition and Cancer, 2011, 63(7): 1044−1052. doi: 10.1080/01635581.2011.597538
    [6]
    肖继坪, 李俊, 郭华春. 彩色马铃薯类黄酮-3-O-葡萄糖基转移酶基因(3GT)的生物信息学和表达分析 [J]. 分子植物育种, 2015, 13(5):1017−1026.

    XIAO J P, LI J, GUO H C. Bioinformatical and expression analysis of UDP-glucose: flavonoid-3-O-glucosyltransferase gene from pigmented potato [J]. Molecular Plant Breeding, 2015, 13(5): 1017−1026.(in Chinese)
    [7]
    ŠULC M, KOTÍKOVÁ Z, PAZNOCHT L, et al. Changes in anthocyanidin levels during the maturation of color-fleshed potato (Solanum tuberosum L.) tubers [J]. Food Chemistry, 2017, 237: 981−988. doi: 10.1016/j.foodchem.2017.05.155
    [8]
    原霁虹, 赵菊梅, 陈亚兰, 等. 甘肃省定西地区引种彩色马铃薯性状比较及产量评价 [J]. 中国食物与营养, 2019, 25(9):14−16. doi: 10.3969/j.issn.1006-9577.2019.09.003

    YUAN J H, ZHAO J M, CHEN Y L, et al. Trait comparison and yield evaluation of color potato introduced into Dingxi of Gansu Province [J]. Food and Nutrition in China, 2019, 25(9): 14−16.(in Chinese) doi: 10.3969/j.issn.1006-9577.2019.09.003
    [9]
    JANSEN G, FLAMME W. Coloured potatoes (Solanum tuberosum L.)–anthocyanin content and Tuber quality [J]. Genetic Resources and Crop Evolution, 2006, 53(7): 1321−1331. doi: 10.1007/s10722-005-3880-2
    [10]
    张宝林, 高聚林, 刘克礼. 马铃薯群体光合系统参数的研究 [J]. 中国马铃薯, 2003, 17(3):146−151. doi: 10.3969/j.issn.1672-3635.2003.03.004

    ZHANG B L, GAO J L, LIU K L. Change in some parameters relative to photosynthesis in potato population [J]. Chinese Potato, 2003, 17(3): 146−151.(in Chinese) doi: 10.3969/j.issn.1672-3635.2003.03.004
    [11]
    李国良, 林赵淼, 许泳清, 等. 不同类型甘薯光合光响应曲线拟合及比较分析 [J]. 福建农业学报, 2018, 33(7):687−690.

    LI G L, LIN Z M, XU Y Q, et al. Photosynthesis-light response models for varieties of sweet potato [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 687−690.(in Chinese)
    [12]
    方霞, 柏志靓, 周生财, 等. 大叶桢楠和小叶桢楠光合生理特性比较 [J]. 园艺学报, 2019, 46(5):964−974.

    FANG X, BAI Z L, ZHOU S C, et al. The Photosynthetic Characteristics of Phoebe zhennan f. elliptical and P. Zhennan f. oblong [J]. Acta Horticulturae Sinica, 2019, 46(5): 964−974.(in Chinese)
    [13]
    叶子飘. 光合作用对光和CO2响应模型的研究进展 [J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012

    YE Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740.(in Chinese) doi: 10.3773/j.issn.1005-264x.2010.06.012
    [14]
    黄美杰, 朱炎辉, 孙慧生, 等. 干旱胁迫下马铃薯品种‘克新1号’的光响应曲线 [J]. 中国马铃薯, 2012, 26(6):325−328. doi: 10.3969/j.issn.1672-3635.2012.06.004

    HUANG M J, ZHU Y H, SUN H S, et al. Light response curve of photosynthesis of potato variety ‘kexin 1’ under drought stress [J]. Chinese Potato Journal, 2012, 26(6): 325−328.(in Chinese) doi: 10.3969/j.issn.1672-3635.2012.06.004
    [15]
    张贵合, 郭华春. PVY和PVS病毒复合侵染对马铃薯光合及营养品质的影响 [J]. 西北植物学报, 2017, 37(8):1569−1576. doi: 10.7606/j.issn.1000-4025.2017.08.1569

    ZHANG G H, GUO H C. Variation of photosynthesis and nutritional quality of potato after infection with PVY and PVS complex virus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(8): 1569−1576.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.08.1569
    [16]
    姚玉璧, 雷俊, 牛海洋, 等. CO2浓度升高与增温对半干旱区马铃薯光合特性的协同影响 [J]. 生态环境学报, 2018, 27(5):793−801.

    YAO Y B, LEI J, NIU H Y, et al. Response of potato photosynthesis to CO2 concentration and temperature rising in the semi-arid region [J]. Ecology and Environmental Sciences, 2018, 27(5): 793−801.(in Chinese)
    [17]
    KIRSCHBAUM M U, FARQUHAR G D. Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora [J]. Plant Physiology, 1987, 83(4): 1032−1036. doi: 10.1104/pp.83.4.1032
    [18]
    THORNLEY J H M. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen [J]. Annals of Botany, 1998, 81(3): 421−430. doi: 10.1006/anbo.1997.0575
    [19]
    叶子飘, 于强. 光合作用光响应模型的比较 [J]. 植物生态学报, 2008, 32(6):1356−1361. doi: 10.3773/j.issn.1005-264x.2008.06.016

    YE Z P, YU Q. Comparison of new and several classical models of photosynthesis in response to irradiance [J]. Journal of Plant Ecology, 2008, 32(6): 1356−1361.(in Chinese) doi: 10.3773/j.issn.1005-264x.2008.06.016
    [20]
    PRADO C H B A, DE MORAES J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions [J]. Photosynthetica, 1997, 33(1): 103−112.
    [21]
    李玉洁, 赵娜, 曹月娥, 等. 干旱区典型植物梭梭与柽柳的光响应曲线模型拟合 [J]. 江苏农业科学, 2019, 47(22):179−182.

    LI Y J, ZHAO N, CAO Y E, et al. Simulation of light response curve model of typical plants Haloxylon ammodendron and Tamarix chinensisin in arid area [J]. Jiangsu Agricultural Sciences, 2019, 47(22): 179−182.(in Chinese)
    [22]
    李晓锐, 刘壮壮, 孔德仪, 等. 薄壳山核桃不同品种光响应过程及模型拟合 [J]. 中南林业科技大学学报, 2019, 39(5):42−48.

    LI X R, LIU Z Z, KONG D Y, et al. Light response in different pecan cultivars and model fitting of the process [J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 42−48.(in Chinese)
    [23]
    叶英林, 欧立军, 邹学校. 辣椒不同紫色程度叶片的光合特性及光响应模型拟合研究[J]. 园艺学报, 2018, 45(6): 1101-1114.

    YE Y L, OU L J, ZOU X X. Photosynthetic characteristics and light response model fitting of pepper leaves in different degrees of purple[J]. Acta Horticulturae Sinica, 2018, 45(6): 1101-1114. (in Chinese)
    [24]
    杜澜, 夏捷, 李海花, 等. 逐步失水过程中绿竹光响应进程及其拟合 [J]. 应用生态学报, 2019, 30(6):2011−2020.

    DU L, XIA J, LI H H, et al. Light response process and simulation of Dendrocalamopsis oldhami in the process of gradual water loss [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2011−2020.(in Chinese)
    [25]
    陈吉玉, 冯铃洋, 高静, 等. 光照强度对苗期大豆叶片气孔特性及光合特性的影响 [J]. 中国农业科学, 2019, 52(21):3773−3781. doi: 10.3864/j.issn.0578-1752.2019.21.006

    CHEN J Y, FENG L Y, GAO J, et al. Influence of light intensity on stoma and photosynthetic characteristics of soybean leaves [J]. Scientia Agricultura Sinica, 2019, 52(21): 3773−3781.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.21.006
    [26]
    章毅, 蔡建国, 孙欧文, 等. 水淹胁迫下绣球光合响应机制的研究 [J]. 核农学报, 2019, 33(4):808−815. doi: 10.11869/j.issn.100-8551.2019.04.0808

    ZHANG Y, CAI J G, SUN O W, et al. Research on photosynthetic responses mechanisms of Hydrangea macrophylla under waterlogging stress [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 808−815.(in Chinese) doi: 10.11869/j.issn.100-8551.2019.04.0808
    [27]
    韩晓, 王海波, 王孝娣, 等. 基于4种光响应模型模拟不同砧木对夏黑葡萄耐弱光能力的影响 [J]. 应用生态学报, 2017, 28(10):3323−3330.

    HAN X, WANG H B, WANG X D, et al. Effects of different rootstocks on the weak light tolerance ability of summer black grape based on 4 photo-response models [J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3323−3330.(in Chinese)
    [28]
    董志新, 韩清芳, 贾志宽, 等. 不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征 [J]. 生态学报, 2007, 27(6):2272−2278. doi: 10.3321/j.issn:1000-0933.2007.06.016

    DONG Z X, HAN Q F, JIA Z K, et al. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties [J]. Acta Ecologica Sinica, 2007, 27(6): 2272−2278.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.06.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (1307) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return