• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHENG Y P, CHEN J, ZHU B Y. Genome-wide Identification and Expression Analysis of Metacaspase Gene Family in strawberry [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1188−1197 doi: 10.19303/j.issn.1008-0384.2020.11.003
Citation: ZHENG Y P, CHEN J, ZHU B Y. Genome-wide Identification and Expression Analysis of Metacaspase Gene Family in strawberry [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1188−1197 doi: 10.19303/j.issn.1008-0384.2020.11.003

Genome-wide Identification and Expression Analysis of Metacaspase Gene Family in strawberry

doi: 10.19303/j.issn.1008-0384.2020.11.003
  • Received Date: 2020-08-16
  • Rev Recd Date: 2020-10-08
  • Available Online: 2020-11-24
  • Publish Date: 2020-11-28
  •   Objective  To identify and study the genes in strawberry (Fragaria ananassa) which related to the synthesis of metacaspases (MCs), the enzymes that played vital roles in regulating the programmed cell death (PCD) in plants.   Method  The physiochemical properties, conserved domains, phylogenetic relationships and conserved motifs of FaMC proteins were analyzed based on strawberry whole genome data. The expressions of FaMC genes in 6 tissues and 6 fruit development stages of strawberry were carried out by qRT-PCR.  Result  The 21 FaMC proteins identified in this study could be divided into Type-I, Type-I*, and Type-II based on the differences on their sequences. The phylogenetic trees and conserved domains of the 3 different types showed the differentiations between them. Type-I FaMC protein consisted of N-terminal domain (NTD) with one zinc finger motif, Type-I* consisted of NTD but no zinc finger, and Type-II had not NTD. The FaMC genes were distinctively differently expressed in different tissues and developmental stages. Type-I expressed in the leaves, Type-I* in the roots, and Type-II in the flowers. And, during the berry development stage, most Type-I* exhibited a high-low-high U-pattern of changes, whereas, part of Type-I and Type-II had a reversed U-pattern.  Conclusion  FaMC genes were identified to be closely related to the synthesis of metacaspases that played important roles in the development and growth of strawberry plants.
  • loading
  • [1]
    PATRICK E, THOMAS P, ROBERT V, et al. Origin and evolution of the octoploid strawberry [J]. Nature genetics, 2019, 51(3): 541−547. doi: 10.1038/s41588-019-0356-4
    [2]
    苏代发, 童江云, 杨俊誉, 等. 中国草莓属植物种质资源的研究、开发与利用进展 [J]. 云南大学学报(自然科学版), 2018(6):1261−1276. doi: 10.7540/j.ynu.20180613

    SU D F, TONG J Y, YANG J Y, et al. Advances in research, exploitation and utilization of Fragaria spp. germplasm resources [J]. Journal of Yunnan University(Natural Sciences Edition), 2018(6): 1261−1276.(in Chinese) doi: 10.7540/j.ynu.20180613
    [3]
    雷家军, 代汉萍, 谭昌华, 等. 中国草莓属植物的分类研究 [J]. 园艺学报, 2006, 33(1):1−5. doi: 10.3321/j.issn:0513-353X.2006.01.001

    LEI J J, DAI H P, TAN C H, et al. Studies on the taxonomy of the strawberry (Fragaria) species distributed [J]. Acta Horticulturae Sinica, 2006, 33(1): 1−5.(in Chinese) doi: 10.3321/j.issn:0513-353X.2006.01.001
    [4]
    LUCAS W, GROOVER A, LICHTENBERGER R, et al. The plant vascular system: evolution, development and functions [J]. Journal of Integrative Plant Biology, 2013, 55(4): 294−388. doi: 10.1111/jipb.12041
    [5]
    AHARONI A, KEIZER L, BROECK H, et al. Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit [J]. Plant Physiology, 2002, 129(3): 1019−1031. doi: 10.1104/pp.003558
    [6]
    FAIT A, HANHINEVA K, BELEGGIA R, et al. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development [J]. Plant Physiology, 2008, 148(2): 730−750. doi: 10.1104/pp.108.120691
    [7]
    CAI J T, ZHANG Z H, ZHOU A Q, et al. Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L [J]. Acta Biologica Hungarica, 2015, 66(1): 66−79. doi: 10.1556/ABiol.66.2015.1.6
    [8]
    LUIS C, ARMANDO B, JULIO M, et al. AtMCP1b, a chloroplast-localised metacaspase, is induced in vascular tissue after wounding or pathogen infection [J]. Functional Plant Biology, 2008, 34(12): 1061−1071. doi: 10.1071/FP07153
    [9]
    DANEVA A, GAO Z, VAN M, et al. Functions and regulation of programmed cell death in plant development [J]. Annual Review of Celland Developmental Biology, 2016, 32: 441−468. doi: 10.1146/annurev-cellbio-111315-124915
    [10]
    冉昆, 马怀宇, 杨洪强. 植物细胞程序性死亡中的类胱天蛋白酶研究进展 [J]. 西北植物学报, 2008, 28(12):2564−2570. doi: 10.3321/j.issn:1000-4025.2008.12.033

    RAN K, MA H Y, YANG H Q. Recent advance in the study of caspase-like proteases involved in plant programmed cell death [J]. Acta Botanica Boreali-occidentalia Sinica, 2008, 28(12): 2564−2570.(in Chinese) doi: 10.3321/j.issn:1000-4025.2008.12.033
    [11]
    SANMARTIN M, JAROSZEWSKI L, RAIKHEL N, et al. Caspases. Regulating death since origin of life [J]. Plant Physiology, 2005, 137(3): 841−847. doi: 10.1104/pp.104.058552
    [12]
    LAM E, ZHANG Y. Regulating the reapers: activating metacaspases for programmed cell death [J]. Trends in Plant Science, 2012, 17(8): 487−494. doi: 10.1016/j.tplants.2012.05.003
    [13]
    TSIATSIAN L, BREUSEGEM F, GALLOIS P, et al. Metacaspases [J]. Cell Death and Differentiation, 2011, 18(8): 1279−1288. doi: 10.1038/cdd.2011.66
    [14]
    FAGUNDES D, BOHN B, CABREIRA C, et al. Caspases in plants: Metacaspase gene family in plant stress responses [J]. Functional & Integrative Genomics, 2015, 15(6): 639−649. doi: 10.1007/s10142-015-0459-7
    [15]
    MININA EA, STAEL S, VAN F, et al. Plant metacaspase activation and activity [J]. Methods in Molecular Biology, 2014, 1133: 237−253. doi: 10.1007/978-1-4939-0357-3_15
    [16]
    KLEMENCIC M, FUNK C. Evolution and structural diversity of MCs. [J]. Journal of Experimental Botany, 2019, 70(7): 2039−2047. doi: 10.1093/jxb/erz082
    [17]
    ALEXIS A, EDGAR S, LAURA S, et al. Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket [J]. Planta, 2014, 239(1): 147−160. doi: 10.1007/s00425-013-1975-0
    [18]
    DIETRICH R A, RICHBERG M H, SCHMIDT R, et al. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death [J]. Cell, 1997, 88(5): 685−694. doi: 10.1016/s0092-8674(00)81911-x
    [19]
    KWON S, HWANG D. Expression analysis of the metacaspase gene familly in Arabidopsis [J]. Journal of Plant Biology, 2013, 56: 391−398. doi: 10.1007/s12374-013-0290-4
    [20]
    WANG L, ZHANG H. Genomewide survey and characterization of metacaspase gene family in rice(Oryza sativa) [J]. Joural of Genetics, 2014, 93(1): 93−102. doi: 10.1007/s12041-014-0343-6
    [21]
    ZHANG C H, GONG P J, WEI R, et al. The metacaspase gene family of Vitis Vinifera L. : characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes [J]. Gene, 2013, 528(2): 267−276. doi: 10.1016/j.gene.2013.06.062
    [22]
    AHMAD R, ZUILY Y, PASSAQUET C, et al. Ozone and aging up-regulate type II metacaspase gene expression and global metacaspase activity in the leaves of field-grown maize (Zea mays L.) plants [J]. Chemosphere, 2012, 87(7): 789−795. doi: 10.1016/j.chemosphere
    [23]
    CAO Y P, MENG D D, CHEN T, et al. Metacaspase gene family in Rosaceae genomes: comparative genomic analysis and their expression during pear pollen tube and fruit development [J]. PLos One, 2019, 14(2): 1−18. doi: 10.1371/journal.pone.0211635
    [24]
    BOLLHONER B, ZHANG B, STAEL S, et al. Post mortem function of AtMC9 in xylem vessel elements [J]. New Phytologist, 2013, 200(2): 498−510. doi: 10.1111/nph.12387
    [25]
    HE R, DRURY G, ROTARI V, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis [J]. The Journal of Biological Chemistry, 2018, 283(2): 774−783. doi: 10.1074/jbc.M704185200
    [26]
    MARIA F, LADA H, ANDREI S, et al. Metacaspase-dependent programmed cell death is essential for plant embroyo genesis [J]. Current Biology, 2004, 14(9): 339−340. doi: 10.1016/j.cub.2004.04.019
    [27]
    ZHOU Y, HU L F, JIANG L, et al. Genome-wide identification, characterization, and transcriptional analysis of the metacaspase gene family in cucumber (Cucumis sativus) [J]. Genome, 2018, 61(3): 187−194. doi: 10.1139/gen-2017-0174
    [28]
    BOSTANCIOGLU S M, TOMBULOGLU G, TOMBULOGLU H. Genome-wide identification of barley MCs (metacaspase) and their possible roles in boron-induced programmed cell death [J]. Molecular Biology Reports, 2018, 45(3): 211−225. doi: 10.1007/s11033-018-4154-3
    [29]
    BOLLHONER B, LUKKARI S, BYGDELL J, et al. The function of two type II metacaspases in woody tissues of Populus trees [J]. New Phytologist, 2018, 217(4): 1551−1565. doi: 10.1111/nph.14945
    [30]
    张智慧. 小麦颖果筛分子发育中II型metacaspase蛋白(TaeMCA II)的定位及蛋白质组学分析[D]. 武汉: 华中农业大学, 2015.

    ZHANG Z H. Localizrtion of the type II metacaspase protein (TaeMCA II) and proteomic analysis in sieve elements development of Triticum Aestivuml[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (116) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return