• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
CHEN Y P, LIU X, XIAO R F, et al. Transformation of Green Fluorescent Protein of Fusarium oxysporum Isolated from Diseased Bitter Gourd [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1228−1233 doi: 10.19303/j.issn.1008-0384.2020.11.008
Citation: CHEN Y P, LIU X, XIAO R F, et al. Transformation of Green Fluorescent Protein of Fusarium oxysporum Isolated from Diseased Bitter Gourd [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1228−1233 doi: 10.19303/j.issn.1008-0384.2020.11.008

Transformation of Green Fluorescent Protein of Fusarium oxysporum Isolated from Diseased Bitter Gourd

doi: 10.19303/j.issn.1008-0384.2020.11.008
  • Received Date: 2020-09-14
  • Rev Recd Date: 2020-10-14
  • Available Online: 2020-11-13
  • Publish Date: 2020-11-28
  •   Objective  As a genetic marker, the green fluorescent protein gene (gfp) of Fusarium oxysporum f. sp. momodicae (Fom), one of the most serious fungal pathogens that caused the fusarium wilt on bitter gourd, was identified and transformed into bacterium to facilitate the study on the infection process and control of the disease.  Method  A highly pathogenic wild-type strain, FJAT-3018, isolated from diseased bitter gourds was transformed with the gene encoding gfp using an Agrobacterium-mediated method. The genetically stable transformants, FJAT-31290 and FJAT-31284, were verified by their colony morphology, growth rate, and pathogenicity.   Result  The efficiency of transforming FJAT-3018 was approximately 14.5 transformants per 106 spores. After 10 generations of subculture, the transformants did not significantly differ from the wild-type strain with respect to the colony morphology, growth rate, and pathogenicity. Strong constitutive expression of gfp could be seen in the fungal hyphae and conidia of the transformants. In addition, under a confocal laser scanning microscope, the transformant-infected bitter gourd plants showed growth of the fungal hyphae inside the roots and stem xylem.   Conclusion  The gfp gene had been successfully transformed into FJAT-31290 and FJAT-31284 with genetic stability and without apparent pathogenicity deviation from the highly pathogenic wild-type strain FJAT-3018.
  • loading
  • [1]
    SUN S K, HUANG J W. A new Fusarium wilt of bitter gourd in Taiwan [J]. Plant Disease, 1983, 67(2): 226−227. doi: 10.1094/PD-67-226
    [2]
    关峰, 万新建, 张景云, 等. 苦瓜枯萎病研究进展 [J]. 中国瓜菜, 2018, 31(5):1−4. doi: 10.3969/j.issn.1673-2871.2018.05.001

    GUAN F, WAN X J, ZHANG J Y, et al. Research progress on Fusarium wilt of bitter gourd [J]. China Cucurbits and Vegetables, 2018, 31(5): 1−4.(in Chinese) doi: 10.3969/j.issn.1673-2871.2018.05.001
    [3]
    SARROCCO S, FALASCHI N, VERGARA M, et al. Use of Fusarium oxysporum f. sp. dianthi transformed with marker genes to follow colonization of carnation roots [J]. Journal of Plant Pathology, 2007, 89(1): 47−54.
    [4]
    黄亚丽, 潘玮. 根癌农杆菌介导丝状真菌遗传转化的研究进展 [J]. 生物技术通报, 2007(3):111−114. doi: 10.3969/j.issn.1002-5464.2007.03.024

    HUANG Y L, PAN W. Transformation in Filamentous fungi mediated by Agrobacterium tumefaciens [J]. Biotechnology Bulletin, 2007(3): 111−114.(in Chinese) doi: 10.3969/j.issn.1002-5464.2007.03.024
    [5]
    徐进, 莫明和, 张克勤. 绿色荧光蛋白(GFP)在真菌研究中的应用 [J]. 生物技术, 2004, 14(6):74−77. doi: 10.3969/j.issn.1004-311X.2004.06.037

    XU J, MO M H, ZHANG K Q. The application of gene fluorescent protein (GFP) in Fungi [J]. Biotechnology, 2004, 14(6): 74−77.(in Chinese) doi: 10.3969/j.issn.1004-311X.2004.06.037
    [6]
    肖荣凤, 朱育菁, 李燕丹, 等. 西瓜尖孢镰刀菌FOV-135的绿色荧光蛋白基因转化 [J]. 福建农业学报, 2009, 24(6):521−524. doi: 10.3969/j.issn.1008-0384.2009.06.007

    XIAO R F, ZHU Y J, LI Y D, et al. Green fluorescent protein gene transformation on Fusarium oxysporum f. sp. niveum strain, FOV-135 [J]. Fujian Journal of Agricultural Sciences, 2009, 24(6): 521−524.(in Chinese) doi: 10.3969/j.issn.1008-0384.2009.06.007
    [7]
    张鸿, 林志坚, 林赵淼, 等. T-DNA随机插入法获得甘薯蔓割病菌非致病生防菌株 [J]. 中国生物防治学报, 2016, 32(5):610−618.

    ZHANG H, LIN Z J, LIN Z M, et al. Obtaining nonpathogenic biological control strains against sweetpotato Fusarium wilt by Agrobacterium-mediated transformation [J]. Chinese Journal of Biological Control, 2016, 32(5): 610−618.(in Chinese)
    [8]
    孙科. 基因枪法介导的抗赤霉病防卫基因转化小麦的研究[D]. 武汉: 华中农业大学, 2013.

    SUN K. Studies on the transformation of wheat with defense genes resistant to FHB by microprojectile bombardment[D]. Wuhan: Hua zhong Agricultural University, 2013. (in Chinese)
    [9]
    张俊华, 刘烨, 韩雨桐, 等. 农杆菌介导稻瘟病菌绿色荧光蛋白(GFP)遗传转化研究 [J]. 东北农业大学学报, 2014, 45(11):1−7. doi: 10.3969/j.issn.1005-9369.2014.11.001

    ZHANG J H, LIU Y, HAN Y T, et al. GFP genetic transformation of Magnaporthe grisea mediated by Agrobacterium tumefaciens [J]. Journal of Northeast Agricultural University, 2014, 45(11): 1−7.(in Chinese) doi: 10.3969/j.issn.1005-9369.2014.11.001
    [10]
    NAHALKOVA J, FATEHI J. Red fluorescent protein (DsRed2) as a novel reporter in Fusarium oxysporumf. sp. lycopersici [J]. FEMS Microbiology Letters, 2003, 225(2): 305−309. doi: 10.1016/S0378-1097(03)00534-2
    [11]
    VISSER M., GORDON T R. WINGFIELD B D, et al Transformation of Fusarium oxysporum f. sp. cubense causal agent of Fuasrium wilt of banana, with the green fluorescent protein (GFP) gene [J]. Australasian Plant Pathology, 2004, 33(1): 69−75. doi: 10.1071/AP03084
    [12]
    张欣. 香蕉枯萎病菌遗传多态性及绿色荧光蛋白基因转化的研究[D]. 儋州: 华南热带农业大学, 2007.
    [13]
    NONOMURA T, TAJIMA H, KITAGAWA Y, et al. Distinguishable staining with neutral red for GFP-marked and GFP-nonmarked Fusarium oxysporum strains simultaneously colonizing root surfaces [J]. Journal of General Plant Pathology, 2003, 69(1): 45−48. doi: 10.1007/s10327-002-0018-7
    [14]
    WU L, CONNER R L, WANG X M, et al. Variation in growth, colonization of maize, and metabolic parameters of GFP- and DsRed-Labeled Fusarium verticillioides strains [J]. Phytopathology, 2016, 106(8): 890−899.
    [15]
    KHANG C H, PARK S Y, RHO H S, et al. Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum)[M]//Agrobacterium Protocols Volume 2. Totowa, NJ: Humana Press, 2006: 403-420.
    [16]
    张旭, Theo van de Lee, 陆维忠, 等. 小麦赤霉菌绿色荧光蛋白标记突变体的侵染研究 [J]. 中国农业科学, 2008, 41(10):3077−3082. doi: 10.3864/j.issn.0578-1752.2008.10.021

    ZHANG X, THEO V D L, LU W Z, et al. Infection of Fusarium graminearum on wheat spikes with green fluorescence protein-tagged revertants [J]. Scientia Agricultura Sinica, 2008, 41(10): 3077−3082.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.10.021
    [17]
    姚锦爱, 张鸿, 黄鹏, 等. 建兰茎腐病原菌尖孢镰刀菌F-02的绿色荧光蛋白基因标记 [J]. 福建农业学报, 2019, 34(1):70−75.

    YAO J A, ZHANG H, HUANG P, et al. Green fluorescent protein genetic marker of Fusarium oxysporum F-02 of stem rot disease on Cymbidium ensifolium [J]. Fujian Journal of Agricultural Sciences, 2019, 34(1): 70−75.(in Chinese)
    [18]
    张俊华, 牟明, 常浩, 等. 根癌农杆菌介导gfp基因转化水稻纹枯病菌及其对病原菌稳定性和致病力的影响 [J]. 东北农业科学, 2016, 41(6):67−74.

    ZHANG J H, MU M, CHANG H, et al. Agrobacterium Tumefaciens-mediated transformation of gfp gene and its effects on stability and pathogenicity for Rhizoctonia solani [J]. Journal of Northeast Agricultural Sciences, 2016, 41(6): 67−74.(in Chinese)
    [19]
    任俊杰, 王丽霞, 高洪波, 等. 农杆菌介导的西瓜枯萎病菌遗传转化 [J]. 植物保护, 2015, 41(1):93−97. doi: 10.3969/j.issn.0529-1542.2015.01.018

    REN J J, WANG L X, GAO H B, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum f. sp. niveum [J]. Plant Protection, 2015, 41(1): 93−97.(in Chinese) doi: 10.3969/j.issn.0529-1542.2015.01.018
    [20]
    刘朋娟, 王政逸, 王秋华, 等. 农杆菌介导的稻瘟病菌转化及致病缺陷突变体筛选 [J]. 中国水稻科学, 2006, 20(3):231−237. doi: 10.3321/j.issn:1001-7216.2006.03.001

    LIU P J, WANG Z Y, WANG Q H, et al. Agrobacterium tume f aciens-mediated transformation of Magnaporthe grisea and identification of pathogenicity defective mutant [J]. Chinese Journal of Rice Science, 2006, 20(3): 231−237.(in Chinese) doi: 10.3321/j.issn:1001-7216.2006.03.001
    [21]
    郭强, 王鑫, 徐世强, 等. 农杆菌介导甘蔗梢腐病病原菌YN41的遗传转化 [J]. 基因组学与应用生物学, 2016, 35(5):1189−1194.

    GUO Q, WANG X, XU S Q, et al. Agrobacterium tumefaciens-mediated transformation of sugarcane pokkah boeng pathogen YN41 [J]. Genomics and Applied Biology, 2016, 35(5): 1189−1194.(in Chinese)
    [22]
    ZVIRIN T, HERMAN R, BROTMAN Y, et al. Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1·2 [J]. Plant pathology, 2010(59): 576−585.
    [23]
    李春强, 梁慧施, 夏亦荠, 等. GFP标记的尖孢镰刀菌西瓜专化型侵染西瓜过程观察 [J]. 热带作物学报, 2011, 32(10):1935−1939. doi: 10.3969/j.issn.1000-2561.2011.10.029

    LI C Q, LIANG H S H, XIAY J, et al. Observation of the infection process of watermelon by Fusarium oxysporum f. sp. niveum using the GFP marker [J]. Chinese Journal of Tropical Crops, 2011, 32(10): 1935−1939.(in Chinese) doi: 10.3969/j.issn.1000-2561.2011.10.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (114) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return