• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHANG Y, ZHANG K, MA J, et al. Proteomes of Sheep Alveolar and Mouse Macrophages Infected by Mycoplasma ovipneumoniae [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1244−1251 doi: 10.19303/j.issn.1008-0384.2020.11.010
Citation: ZHANG Y, ZHANG K, MA J, et al. Proteomes of Sheep Alveolar and Mouse Macrophages Infected by Mycoplasma ovipneumoniae [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1244−1251 doi: 10.19303/j.issn.1008-0384.2020.11.010

Proteomes of Sheep Alveolar and Mouse Macrophages Infected by Mycoplasma ovipneumoniae

doi: 10.19303/j.issn.1008-0384.2020.11.010
  • Received Date: 2020-06-12
  • Rev Recd Date: 2020-09-04
  • Available Online: 2020-11-24
  • Publish Date: 2020-11-28
  •   Objective  Feasibility of using mouse macrophage cell line Raw 264.7 for studies on pathogenesis of Mycoplasma ovipneumoniae(Mo) on sheep was investigated by comparing the proteome changes taken place in both macrophages after an induced Mo infection.   Method   The primary alveolar macrophages from sheep lung tissue were isolated and used, along with Raw 264.7, for the study. Both macrophages were infected with a standard strain of Mo (MOI=10) for 24h prior to proteomic and RT-PCR analyses to compare the expressions on the target genes in them.   Result   The image of specific surface antigen CD14 shown on the cells obtained from the lung tissue confirmed the identity of the isolated sheep primary alveolar macrophages. After infected by Mo, both sheep and mouse macrophages showed a similar significant change pattern on the expressions of FADD, IL-1β, NOS2, and THBS1. These proteins are known to associated with the Toll-like receptor signaling pathway, MAPK signaling pathway, and autophagy in biological processes.  Conclusion  It appeared that Raw 264.7 could be satisfactorily used to substitute the sheep primary alveolar macrophage in a simulated system for studies on Mo pathogenesis to considerably simplify the process and save cost in conducting the experiments on sheep.
  • loading
  • [1]
    CARMICHAEL L E, ST GEORGE T D, SULLIVAN N D, et al. Isolation, propagation, and characterization studies of an ovine Mycoplasma responsible for proliferative interstitial pneumonia [J]. The Cornell Veterinarian, 1972, 62(4): 654−679.
    [2]
    BESSER T E, FRANCES CASSIRER E, HIGHLAND M A, et al. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease [J]. Preventive Veterinary Medicine, 2013, 108(2/3): 85−93.
    [3]
    BESSER T E, CASSIRER E F, POTTER K A, et al. Epizootic pneumonia of Bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae [J]. PLoS One, 2014, 9(10): e110039. doi: 10.1371/journal.pone.0110039
    [4]
    ABDEL HALIUM M M, SALIB F A, MAROUF S A, et al. Isolation and molecular characterization of Mycoplasma spp. in sheep and goats in Egypt [J]. Veterinary World, 2019, 12(5): 664−670. doi: 10.14202/vetworld.2019.664-670
    [5]
    STIPKOVITS L, BELAK S, PALFI V, et al. Isolation of Mycoplasma ovipneumoniae from sheep with pneumonia [J]. Acta Vet Acad Sci Hung, 1975, 25(2-3): 267−273.
    [6]
    王华, 杨发龙, 王永, 等. 山羊支原体性肺炎流行病学调查 [J]. 中国畜牧兽医, 2011, 38(1):210−214.

    WANG H, YANG F L, WANG Y, et al. Epidemiological investigation of caprine Mycoplasma pneumoniae in Sichuan Province [J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1): 210−214.(in Chinese)
    [7]
    GONÇALVES R, MARIANO I, NÚÑEZ A, et al. Atypical non-progressive pneumonia in goats [J]. The Veterinary Journal, 2010, 183(2): 219−221. doi: 10.1016/j.tvjl.2008.10.005
    [8]
    ELLIOTT M R, KOSTER K M, MURPHY P S. Efferocytosis signaling in the regulation of macrophage inflammatory responses [J]. The Journal of Immunology, 2017, 198(4): 1387−1394. doi: 10.4049/jimmunol.1601520
    [9]
    NIANG M, ROSENBUSCH R F, LOPEZ-VIRELLA J, et al. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae [J]. Veterinary Microbiology, 1997, 58(1): 31−43. doi: 10.1016/S0378-1135(97)00141-7
    [10]
    LUO H X, WU X X, XU Z K, et al. NOD2/c-Jun NH2-terminal kinase triggers Mycoplasma ovipneumoniae-induced macrophage autophagy[J]. Journal of Bacteriology, 2020, 202(20). DOI: 10.1128/jb.00689-19.
    [11]
    LI G, FAN L P, WANG Y Q, et al. High co-expression of TNF-α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia [J]. Molecular Medicine, 2019, 25: 38.
    [12]
    JIANG F, HE J Y, NAVARRO-ALVAREZ N, et al. Elongation factor Tu and heat shock protein 70 are membrane-associated proteins from Mycoplasma ovipneumoniae capable of inducing strong immune response in mice [J]. PLoS One, 2016, 11(8): e0161170. doi: 10.1371/journal.pone.0161170
    [13]
    YANG M Y, MENG F Z, GAO M, et al. Cytokine signatures associate with disease severity in children with Mycoplasma pneumoniae pneumonia [J]. Scientific Reports, 2019, 9: 17853. doi: 10.1038/s41598-019-54313-9
    [14]
    MARINARO M, GRECO G, TARSITANO E, et al. Changes in peripheral blood leucocytes of sheep experimentally infected with Mycoplasma agalactiae [J]. Veterinary Microbiology, 2015, 175(2/3/4): 257−264.
    [15]
    BAO J, WU Z, ISHFAQ M, et al. Comparison of experimental infection of normal and immunosuppressed chickens with Mycoplasma gallisepticum [J]. Journal of Comparative Pathology, 2020, 175: 5−12. doi: 10.1016/j.jcpa.2019.12.001
    [16]
    LI X, ZHANG Y K, YIN B, et al. Toll-like receptor 2 (TLR2) and TLR4 mediate the Iga immune response induced by Mycoplasma hyopneumoniae [J]. Infection and Immunity, 2019, 88(1). DOI: 10.1128/iai.00697-19.
    [17]
    NAGHIB M, HATAM-JAHROMI M, NIKTAB M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue [J]. Allergologia et Immunopathologia, 2018, 46(5): 508−513. doi: 10.1016/j.aller.2017.09.021
    [18]
    ZHANG Y Y, MEI S F, ZHOU Y L, et al. TIPE2 negatively regulates Mycoplasma pneumonia-triggered immune response via MAPK signaling pathway [J]. Scientific Reports, 2017, 7: 13319. doi: 10.1038/s41598-017-13825-y
    [19]
    HWANG M H, DAMTE D, LEE J S, et al. Mycoplasma hyopneumoniae induces pro-inflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells [J]. Veterinary Research Communications, 2011, 35(1): 21−34. doi: 10.1007/s11259-010-9447-5
    [20]
    LU Z Y, XIE D Y, CHEN Y, et al. TLR2 mediates autophagy through ERK signaling pathway in Mycoplasma gallisepticum-infected RAW264.7 cells [J]. Molecular Immunology, 2017, 87: 161−170. doi: 10.1016/j.molimm.2017.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (107) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return