• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
ZHANG H, , LIN C Q, et al. Responses of Rhizosphere Bacterial Community to Straw-mulching and Conditioner-addition in Acid Soil of Maize Field [J]. Fujian Journal of Agricultural Sciences,2021,36(4):473−479 doi: 10.19303/j.issn.1008-0384.2021.04.014
Citation: ZHANG H, , LIN C Q, et al. Responses of Rhizosphere Bacterial Community to Straw-mulching and Conditioner-addition in Acid Soil of Maize Field [J]. Fujian Journal of Agricultural Sciences,2021,36(4):473−479 doi: 10.19303/j.issn.1008-0384.2021.04.014

Responses of Rhizosphere Bacterial Community to Straw-mulching and Conditioner-addition in Acid Soil of Maize Field

doi: 10.19303/j.issn.1008-0384.2021.04.014
  • Received Date: 2020-10-16
  • Rev Recd Date: 2020-12-28
  • Available Online: 2021-03-27
  • Publish Date: 2021-04-30
  •   Objective  Composition and diversity of rhizosphere bacterial community in response to straw-mulching and soil conditioning on land of maize field were studied.   Methods  Soil at the maize growing fields was treated with either no chemical fertilizer (CK), a single chemical fertilizer (T1), straw-mulching and chemical fertilization (T2), or a soil conditioner plus chemical fertilization (T3). The second-generation technology of Illumina Miseq high-throughput sequencing was used based on the bacterial 16S rRNA genes in V3-V4 region to determine the changes of diversity, richness, composition, and structure of bacterial community in the rhizosphere soil under treatment.   Results  The dominant bacteria, which showed their relative abundance greater than 10%, in the rhizosphere bacterial community were 4,183 genera of Proteobacteria, Chloroflexi, and Actinobacteria. The ACE and Chao 1 richness indices of the community under T1 were 17.65% and 17.88%, respectively, lower, while those under T3, 14.52% and 14%, respectively, higher than those under CK. At genera level, the stratified cluster diagram of community structure under T3 differed from those under CK, T1, and T2.   Conclusion  T3 significantly affected the structure of the bacteria community and more so than did the other treatments. Among all treatments, T1 lowered, while T3 enhanced, the richness of the community over CK. And the added soil conditioner raised the pH of the acidic soil rendering the greatest effect on the rhizosphere bacterial community in maize field.
  • loading
  • [1]
    林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能 [J]. 土壤学报, 2008, 45(5):892−900.

    LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity [J]. Acta Pedologica Sinica, 2008, 45(5): 892−900.(in Chinese)
    [2]
    曹志平. 土壤生态学[M]. 北京: 化学工业出版社, 2007.
    [3]
    齐虹凌, 贺国强, 李恒全, 等. 轮作与连作对烤烟不同生育期根际土壤细菌群落结构的影响 [J]. 中国烟草学报, 2015, 21(5):42−48.

    QI H L, HE G Q, LI H Q, et al. Effects of rotational and continuous cropping on bacterial community structures in rhizospheric soil at different growth stages of flue-cured tobacco [J]. Acta Tabacaria Sinica, 2015, 21(5): 42−48.(in Chinese)
    [4]
    CARSWELL A M, HILL P W, JONES D L, et al. Short-term biotic removal of dissolved organic nitrogen (DON) compounds from soil solution and subsequent mineralisation in contrasting grassland soils [J]. Soil Biology and Biochemistry, 2016, 96: 82−85. doi: 10.1016/j.soilbio.2016.01.017
    [5]
    MANOHARAN L, KUSHWAHA S K, AHRÉN D, et al. Agricultural land use determines functional genetic diversity of soil microbial communities [J]. Soil Biology and Biochemistry, 2017, 115: 423−432. doi: 10.1016/j.soilbio.2017.09.011
    [6]
    樊晓刚, 金轲, 李兆君, 等. 不同施肥和耕作制度下土壤微生物多样性研究进展 [J]. 植物营养与肥料学报, 2010, 16(3):744−751.

    FAN X G, JIN K, LI Z J, et al. Soil microbial diversity under different fertilization and tillage practices: A review [J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 744−751.(in Chinese)
    [7]
    李玉新, 赵忠, 陈金泉, 等. 沙棘林土壤微生物多样性研究 [J]. 西北农林科技大学学报(自然科学版), 2010, 38(8):67−74, 82.

    LI Y X, ZHAO Z, CHEN J Q, et al. Study on soil microbial diversity of seabuckthorn forest [J]. Journal of Northwest a& f University (Natural Science Edition), 2010, 38(8): 67−74, 82.(in Chinese)
    [8]
    刘玮琦, 茆振川, 杨宇红, 等. 应用16S rRNA基因文库技术分析土壤细菌群落的多样性 [J]. 微生物学报, 2008, 48(10):1344−1350.

    LIU W Q, MAO Z C, YANG Y H, et al. Analysis of soil bacterial diversity by Using the 16S rRNA gene Library [J]. Acta Microbiologica Sinica, 2008, 48(10): 1344−1350.(in Chinese)
    [9]
    朱兆良, 文启孝. 中国土壤氮素[M]. 南京: 江苏科学技术出版社, 1992.
    [10]
    荣勤雷, 梁国庆, 周卫, 等. 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响 [J]. 植物营养与肥料学报, 2014, 20(5):1168−1177.

    RONG Q L, LIANG G Q, ZHOU W, et al. Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil [J]. Plant Nutrition and Fertilizer Science, 2014, 20(5): 1168−1177.(in Chinese)
    [11]
    王飞, 林诚, 李清华, 等. 长期不同施肥方式对南方黄泥田水稻产量及基础地力贡献率的影响 [J]. 福建农业学报, 2010, 25(5):631−635.

    WANG F, LIN C, LI Q H, et al. Effects of long-term fertilization on rice yield and contribution rate of basic soil productivity on the yellow paddy of Southern China [J]. Fujian Journal of Agricultural Sciences, 2010, 25(5): 631−635.(in Chinese)
    [12]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [13]
    WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags [J]. Applied and Environmental Microbiology, 2012, 78(23): 8264−8271. doi: 10.1128/AEM.01821-12
    [14]
    葛英亮, 于水利, 时文歆, 等. 应用Illumina MiSeq高通量测序技术解析O3BAC饮用水处理过程细菌多样性变化 [J]. 食品科学, 2016, 37(16):223−228.

    GE Y L, YU S L, SHI W X, et al. Analysis of bacterial diversity in O3BAC drinking water treatment process by using illumina MiSeq high throughput sequencing technology [J]. Food Science, 2016, 37(16): 223−228.(in Chinese)
    [15]
    王爱英, 赵啸林, 孙玲丽, 等. 沼渣土壤调理剂对胶东地区酸性土壤改良效果研究 [J]. 中国沼气, 2019, 37(4):98−102.

    WANG A Y, ZHAO X L, SUN L L, et al. Effect of soil conditioner of biogas slurry on acid soil improvement in Jiaodong area [J]. China Biogas, 2019, 37(4): 98−102.(in Chinese)
    [16]
    李昂. 四种土壤调理剂对酸性土壤铝毒害改良效果研究[D]. 北京: 中国农业科学院, 2014.

    LI A. Remediate effects on aluminum toxicity by using four soil conditioners in acid soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese).
    [17]
    KALBITZ K, KAISER K. Contribution of dissolved organic matter to carbon storage in forest mineral soils [J]. Journal of Plant Nutrition and Soil Science, 2010, 171(1): 52−60.
    [18]
    戴志刚, 鲁剑巍, 李小坤, 等. 不同作物还田秸秆的养分释放特征试验 [J]. 农业工程学报, 2010, 26(6):272−276.

    DAI Z G, LU J W, LI X K, et al. Nutrient release characteristic of different crop straws manure [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 272−276.(in Chinese)
    [19]
    郑丹. 不同条件下作物秸秆养分释放规律的研究[D]. 哈尔滨: 东北农业大学, 2012.

    ZHENG D. The nutrient releasing regularity of crop stalks under different conditions[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese).
    [20]
    王志勇, 白由路, 杨俐苹, 等. 低土壤肥力下施钾和秸秆还田对作物产量及土壤钾素平衡的影响 [J]. 植物营养与肥料学报, 2012, 18(4):900−906.

    WANG Z Y, BAI Y L, YANG L P, et al. Effects of application of potassium fertilizer and straw returning on crop yields and soil potassium balance in low-yielding fields [J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 900−906.(in Chinese)
    [21]
    IQBAL M, UL-HASSAN A, VAN ES H M. Influence of Residue Management and Tillage Systems on Carbon Sequestration and Nitrogen, Phosphorus, and Potassium Dynamics of Soil and Plant and Wheat Production in Semi-arid Region [J]. Communications in Soil Science and Plant Analysis, 2011, 42(5): 528−547. doi: 10.1080/00103624.2011.546929
    [22]
    王怡, 常彬河, 刘月, 等. 基于MiSeq测序分析酸性农作物土壤细菌群落结构与多样性 [J]. 环境科学研究, 2019, 32(9):1575−1583.

    WANG Y, CHANG B H, LIU Y, et al. Analysis of bacterial community composition and diversity in acid soil using MiSeq sequencing [J]. Research of Environmental Sciences, 2019, 32(9): 1575−1583.(in Chinese)
    [23]
    李丹, 靳鲲鹏, 李小霞, 等. 基于高通量测序技术的玉米不同生育时期土壤细菌多样性变化 [J]. 山西农业科学, 2019, 47(9):1569−1572.

    LI D, JIN K P, LI X X, et al. Variations of soil bacterial diversity at different growth stages in maize based on high-throughput sequencing [J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1569−1572.(in Chinese)
    [24]
    LIU J J, SUI Y Y, YU Z H, et a1. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China [J]. Soil Biology and Biochemistry, 2014, 70: 113−122. doi: 10.1016/j.soilbio.2013.12.014
    [25]
    GRIFFITHS R I, THOMSON B C, JAMES P, et a1. The bacterial biogeography of British soils [J]. Environmental Microbiology, 2011(13): 1642−1654.
    [26]
    NAVARRETE A A, KURAMAE E E, DE HOLLANDER M, et al. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils [J]. FEMS Microbiology Ecology, 2013, 83(3): 607−621. doi: 10.1111/1574-6941.12018
    [27]
    LAUBER C L, STRICKLAND M S, BRADFORD M A, et a1. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biology and Biochemistry, 2008, 40(9): 2407−2415. doi: 10.1016/j.soilbio.2008.05.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (553) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return