• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

满江红内生菌外膜泡囊的电镜观察与超微结构分析

黄敏敏 陈彬 ULLARasmussen 陈坚 罗钦 郑伟文

黄敏敏, 陈彬, ULLARasmussen, 陈坚, 罗钦, 郑伟文. 满江红内生菌外膜泡囊的电镜观察与超微结构分析[J]. 福建农业学报, 2018, 33(8): 806-813. doi: 10.19303/j.issn.1008-0384.2018.08.007
引用本文: 黄敏敏, 陈彬, ULLARasmussen, 陈坚, 罗钦, 郑伟文. 满江红内生菌外膜泡囊的电镜观察与超微结构分析[J]. 福建农业学报, 2018, 33(8): 806-813. doi: 10.19303/j.issn.1008-0384.2018.08.007
HUANG Min-min, CHEN Bin, ULLA Rasmussen, CHEN Jian, LUO Qin, ZHENG Wei-wen. Electron Microscopic Observation and Ultrastructural Analysis of Outer Membrane Vesicles Released by the Endophyte within Azolla microphylla[J]. Fujian Journal of Agricultural Sciences, 2018, 33(8): 806-813. doi: 10.19303/j.issn.1008-0384.2018.08.007
Citation: HUANG Min-min, CHEN Bin, ULLA Rasmussen, CHEN Jian, LUO Qin, ZHENG Wei-wen. Electron Microscopic Observation and Ultrastructural Analysis of Outer Membrane Vesicles Released by the Endophyte within Azolla microphylla[J]. Fujian Journal of Agricultural Sciences, 2018, 33(8): 806-813. doi: 10.19303/j.issn.1008-0384.2018.08.007

满江红内生菌外膜泡囊的电镜观察与超微结构分析

doi: 10.19303/j.issn.1008-0384.2018.08.007
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2017R1018-3

福建省科技计划项目 2017N0103

福建省农业科学院项目 A2017-2

瑞典国际开发署项目 Sida2003-61

福建省农业科学院科技创新团队建设项目 STIT2017-1-1

详细信息
    作者简介:

    黄敏敏(1977-)女, 硕士, 主要从事电子显微镜检测与分析(E-mail:hmmlwb@qq.com)

    通讯作者:

    郑伟文(1942-), 男, 研究员, 主要从事满江红与蓝细菌共生的细胞与分子生物学研究(E-mail:bcfaas01@hotmail.com)

  • 中图分类号: S555

Electron Microscopic Observation and Ultrastructural Analysis of Outer Membrane Vesicles Released by the Endophyte within Azolla microphylla

  • 摘要: 前人研究表明,自然界中独立生活或纯培养的细菌等原核微生物会分泌外膜泡囊,这些泡囊在多个生物学过程中有着重要的作用。本研究用扫描和透射电镜对水生植物满江红体内的共生蓝细菌和内生细菌(合称内生菌)产生的泡囊进行了观察和超微结构特征分析。结果显示,这些内生菌不仅在活跃的营养生长期,而且在有性繁殖阶段均会释放泡囊,甚至在濒临死亡时也会排出泡囊。根据这些外膜泡囊的超微结构特征,将之分成5种类型,即中透型、内膜型、单核型、多核型和多泡型。通过对泡囊产生过程中超微结构变化的分析,认为本研究材料的内生菌周质层中的肽聚糖参与外膜泡囊的生成与释放。这一结果对阐明原核生物泡囊的发生机制具有普遍意义。本研究还对电镜图像的判读进行了讨论,以避免由于样品前处理等人为干预产生的假象而导致误判。
  • 图  1  共生蓝细菌细胞表面的膜外泡囊

    注:图中长白箭头指早期泡囊;粗白箭头指中期泡囊;黑箭头指成熟泡囊。

    Figure  1.  OMVs on surface of cyanobacterial vegetative cells

    图  2  蓝细菌细胞表面的类似细菌的圆球状结构

    Figure  2.  Spherical bacterium-like structure on surface of a cyanobacterial cell

    图  3  杆状细菌表面的突起物

    Figure  3.  Protrusions on surface of rod-shaped bacterium

    图  4  共生蓝细菌营养细胞(局部)释放的膜外泡囊

    Figure  4.  OMVs released by a portion of cyanobacterial vegetative cell

    图  5  蓝细菌厚垣孢子和内生细菌释放的泡囊

    Figure  5.  OMVs discharged by cyanobacterial akinets and endophytic bacteria

    图  6  正在分泌泡囊的细菌的超薄切片观察

    Figure  6.  TEM photography of ultrathin slice of vesicle-secreting bacterium

    图  7  正在分泌泡囊的细菌的负染观察

    Figure  7.  TEM photography of negative-stained vesicle-secreting bacterium

    图  8  细菌分泌的不同发生阶段的泡囊

    Figure  8.  OMVs released by bacteria at various developing stages

    图  9  一濒临类似细胞程序性死亡的蓝细菌细胞正向胞外释放大量泡囊

    Figure  9.  A programmed near-normal-death cyanobacterial cell releasing numerous vesicles

    图  10  蓝细菌细胞的肽聚糖层出现的裂口

    Figure  10.  Ruptured holes appeared on peptidoglycan layer of dying cyanobacterial cell

    图  11  被厚层夹膜包裹仍向外分泌泡囊的细菌

    Figure  11.  Vesicle-secreting bacterium covered by thick capsule

    图  12  叶腔内濒死细菌释放的泡囊

    Figure  12.  OMVs produced by dead and dying bacterial cells inside leaf cavity

    图  13  从蓝细菌释放出的不同类型的OMVs

    注:五星形:扁盘形OMVs;黑箭头:多核型OMVs;短白箭头:单核型OMVs。细长白箭头:内膜型;六角形:多核型;粗黑箭头:多泡型。

    Figure  13.  Diverse types of OMVs discharged from cyanobacteria

  • [1] CARMEN S, META J K. Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions[J]. Nature reviews microbiology, 2015, (13):605-620. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025687427/
    [2] IVAPRIYA K V, ASHLEY J R, BHARAT B, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation.[J]. Cell, 2016, 165(5):1106-1119. doi: 10.1016/j.cell.2016.04.015
    [3] BILLER S J, SCHUBOTZ F, ROGGENSACK S E, et al. Bacterial vesicles in marine ecosystems.[J]. Science, 2014, 343:183-186. doi: 10.1126/science.1243457
    [4] SYBREN L N M, XANDRA O B, ALISSA M. Weaver. Extracellular Vesicles:Unique Intercellular Delivery Vehicles.[J]. Trend in Cell Biology, 2017, 27(3):172-188. doi: 10.1016/j.tcb.2016.11.003
    [5] HYUNJIN Y. Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation[J]. J Microbiol Biotechnol, 2016, 26(8):1343-1347. doi: 10.4014/jmb.1604.04080
    [6] SANDRO R, FRANZ G Z, FATIH C, et al. Bacterial outer membrane vesicle biogenesis:a new mechanism and its implications[J]. Microbial Cell, 2016, 3(6):257-259. doi: 10.15698/mic
    [7] WEIWEN ZHENG, LIANG RANG, BIRGITTA B. Structural Characteristics of the cyanobacterium-Azolla symbioses[M]]//Katharina Pawlowski (editor). Prokaryotic Symbionts in Plants. Heidelberg, Germany[J]. Springer, 2009, 235-264.
    [8] 郑斯平, 陈彬, 关雄, 等.小叶满江红(Azollamicrophylla)内生细菌多样性的PCR-DGGE及电子显微镜分析[J].农业生物技术学报, 2008, 16(3):508-514. doi: 10.3969/j.issn.1674-7968.2008.03.025
    [9] ZHENG W, BERGMAN B, CHEN B, et al. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azollamicrophylla symbiosis[J]. New Phytol, 2009, 181:53-61. doi: 10.1111/j.1469-8137.2008.02644.x
    [10] GALLUZZI L, AARONSON S A, ABRAMS J, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes[J]. Cell Death Differ, 2009, 16:1093-1107. doi: 10.1038/cdd.2009.44
    [11] ZHENG W, RASMUSSEN U, ZHENG S, et al. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont[J]. PLoS ONE, 2013, 8(6):e66147. doi: 10.1371/journal.pone.0066147
    [12] SAPNA J, JONATHAN P. Bacterial membrane vesicles as novel nanosystems for drug delivery[J]. Int J Nanomedicine, 2017, (12):6329-6341. http://europepmc.org/abstract/MED/28919737
    [13] CARLA PÉREZ-CRUZ, ORNELLA CARRIÓ N, LIDIA DELGADO, et al. Elena Mercade. New Type of Outer Membrane Vesicle Produced by the Gram-Negative Bacterium Shewanellavesiculosa M7T:Implications for DNA Content[J]. Appl Environ Microbiol, 2013, 79(6):1874-1881. doi: 10.1128/AEM.03657-12
    [14] CARLA PÉREZ-CRUZ, LIDIA DELGADO, CARMEN LÓPEZ-IGLESIAS, et al. Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria[J]. PLoS ONE, 2015, 10(1):e0116896. doi: 10.1371/journal.pone.0116896
    [15] CARMEN S, CLARETTA J S, META J K. Envelope Control of Outer Membrane Vesicle Production in Gram-negative Bacteria[J]. Biochemistry, 2013, 52(18):3031-3040. doi: 10.1021/bi400164t
    [16] ROIER S, ZINGL F G, CAKAR F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nat Communication, 2016, (7):10515.
    [17] ADAM KULP, META J K. Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles[J]. Annu Rev Microbiol, 2010, 64:163-184. doi: 10.1146/annurev.micro.091208.073413
    [18] MCBROOM A J, KUEHN M J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response[J]. Mol Microbiol, 2007, 63(2):545-558. doi: 10.1111/j.1365-2958.2006.05522.x
    [19] SCHERTZER J W, WHITELEY M. A bilayer-couple model of bacterial outer membrane vesicles biogenesis[J]. MBio, 2012, 3(2):e297-e311. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3312216
    [20] JULIA I T, LEIDY X L, PETTER L, et al. Comparative Analysis of Membrane Vesicles from Three Piscirickettsiasalmonis Isolates Reveals Differences in Vesicle Characteristics[J]. PLoS ONE, 2016, 11(10):e0165099. doi: 10.1371/journal.pone.0165099
  • 加载中
图(13)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  300
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-17
  • 修回日期:  2018-07-07
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回