• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻瘟病抗性基因Pi-d2、Pi-d3和Pigm不同敲除突变体的抗性评价

张柱坚 陈子强 顾建强 田大刚

张柱坚, 陈子强, 顾建强, 田大刚. 稻瘟病抗性基因Pi-d2、Pi-d3和Pigm不同敲除突变体的抗性评价[J]. 福建农业学报, 2018, 33(12): 1231-1236. doi: 10.19303/j.issn.1008-0384.2018.12.001
引用本文: 张柱坚, 陈子强, 顾建强, 田大刚. 稻瘟病抗性基因Pi-d2、Pi-d3和Pigm不同敲除突变体的抗性评价[J]. 福建农业学报, 2018, 33(12): 1231-1236. doi: 10.19303/j.issn.1008-0384.2018.12.001
ZHANG Zhu-jian, CHEN Zi-qiang, GU Jian-qiang, TIAN Da-gang. Resistance on Rice Blast of Knockout Mutants of Pi-d2, Pi-d3 and Pigm[J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1231-1236. doi: 10.19303/j.issn.1008-0384.2018.12.001
Citation: ZHANG Zhu-jian, CHEN Zi-qiang, GU Jian-qiang, TIAN Da-gang. Resistance on Rice Blast of Knockout Mutants of Pi-d2, Pi-d3 and Pigm[J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1231-1236. doi: 10.19303/j.issn.1008-0384.2018.12.001

稻瘟病抗性基因Pi-d2、Pi-d3和Pigm不同敲除突变体的抗性评价

doi: 10.19303/j.issn.1008-0384.2018.12.001
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2017R1019-10

福建省科技计划项目——省属公益类科研院所基本科研专项 2018R1019-9

详细信息
    作者简介:

    张柱坚(1994-), 男, 硕士研究生, 研究方向:分子植物育种(E-mail:723926289@qq.com)

    通讯作者:

    田大刚(1978-), 男, 副研究员, 研究方向:水稻分子免疫和抗病育种(E-mail:tdg@fjage.org)

  • 中图分类号: S511

Resistance on Rice Blast of Knockout Mutants of Pi-d2, Pi-d3 and Pigm

  • 摘要: 谷丰B是一个广谱高抗稻瘟病水稻保持系,含有稻瘟病抗性基因Pi-d2,Pi-d3和Pigm。为了进一步明确3个抗性基因在谷丰B中的作用,本研究利用CRISPR/Cas9多基因编辑系统构建了共敲除Pi-d2+Pi-d3+Pigm基因载体。通过遗传转化试验以及DNA测序,T0代植株获得多种突变体组合类型。对其中的Pi-d2、PigmPi-d2+Pi-d3、Pi-d2+PigmPi-d2+Pi-d3+Pigm等5种纯合突变体的T1代株系进行稻瘟病室内接种鉴定,研究结果表明,Pi-d2、Pi-d3和Pigm分别对86/501-3、KJ201/CHE86061和86/CHE86061/501-3的菌株存在显著的抗性效应,Pi-d2+Pi-d3,Pi-d2+PigmPi-d2+Pi-d3+Pigm的敲除株系的抗性不完全等同于单个基因的简单叠加,其中Pi-d2+Pi-d3+Pigm的突变体对菌株CHL768表现完全不同于其他类型突变体的感病性。上述结果为解析广谱高抗稻瘟病水稻材料谷丰B的抗性遗传机理提供重要信息,也为水稻稻瘟病抗病育种研究提供参考。
  • 图  1  PigmPi-d2和Pi-d3多基因编辑载体构建

    注:(A)PigmPi-d2和Pi-d3多基因编辑载体结构。(B)gRNA表达盒电泳检测。M为DL 2 000 Plus DNA Marker;1为u6b-Pigm-gRNA表达盒;2为u6a-Pi-d2-gRNA表达盒;3为u6b-Pi-d2-gRNA表达盒;4为u6a-Pi-d3-gRNA表达盒;5为u6b-Pi-d2-gRNA表达盒。(C)PigmPi-d2和Pi-d3多基因编辑载体菌落PCR检测。M为DL 2 000 Plus DNA Marker;1为不含模板的空白对照;2~11为单菌落PCR产物。

    Figure  1.  Construction of Pigm, Pi-d2 and Pi-d3 multi-gene editing vectors

    图  2  靶位点突变序列分析

    注:(A)PCR鉴定转基因阳性株系。M为DL 2 000 Plus DNA Marker;1为阳性对照;2为不含模板的空白对照;3为以野生型谷丰B植株DNA为模板的PCR产物;4~23为以阳性苗DNA为模板的PCR产物。(B)T0代纯合突变类型分析结果。下划线部分为PAM区;横线为碱基缺失,箭头为碱基插入。(C)T1代植株突变类型测序结果。下划线部分为PAM区。

    Figure  2.  Analysis on mutation sequences of target spots

    表  1  本研究所用的引物

    Table  1.   Primers applied

    引物名称 引物序列 用途
    Pigm-u6b-F GTTGGATACGGATAGCGATCCGG 构建Pigm敲除载体
    Pigm-u6b-R AAACCCGGATCGCTATCCGTATC
    Pi-d2-u6a-F GCCGAAGTCATCTGAATGGGTGAC 构建Pi-d2敲除载体
    Pi-d2-u6a-R AAACGTCACCCATTCAGATGACTT
    Pi-d2-u6b-F GTTGAATGCCTTCCTGCAGTCAGG 构建Pi-d2敲除载体
    Pi-d2-u6b-R AAACCCTGACTGCAGGAAGGCATT
    Pi-d3-u6a-F GCCGCCTCTTTTCTGAGATCCGGG 构建Pi-d3敲除载体
    Pi-d3-u6a-R AAACCCCGGATCTCAGAAAAGAGG
    Pi-d3-u6b-F GTTGCCGCGTTCGTCAAGCAGGTG 构建Pi-d3敲除载体
    Pi-d3-u6b-R AAACCACCTGCTTGACGAACGCGG
    Cas9-Pigm-F GAAAGACGAACTATTAAAGG Pigm敲除载体测序鉴定
    Cas9-Pigm-R TGATCCAGAGAACTGGGGCC
    Cas9-Pi-d2-F GCTCTGTCTTTGGCTTTGGT Pi-d2敲除载体测序鉴定
    Cas9-Pi-d2-R GCTCTGTCTTTGGCTTTGGT
    Cas9-Pi-d3-F GTGTTGTGGGCTCACTAATC Pi-d3敲除载体测序鉴定
    Cas9-Pi-d3-R CAGCAAATCCCTCTTCTTCT
    HPT-F AAGCTGCATCATCGAAATTG 潮霉素鉴定
    HPT-R TCGTTATGTTTATCGGCACT
    下载: 导出CSV

    表  2  突变株系与对照株系的稻瘟病抗性鉴定结果

    Table  2.   Blast-resistance of mutant and control lines as evaluated by fungal inoculation

    材料抗性等级 菌株
    KJ201 86 CHE86061 501-3 CHL768 CHL2110
    谷丰B 0 0 0 0 0 4
    GFB234-5(Pi-d2) 0 3 0 5 0 4
    GFB234-3(Pigm) 0 4 5 5 0 4
    GFB234-11(Pi-d2+ Pi-d3) 2 3 4 5 0 4
    GFB234-8(Pigm+ Pi-d3) 1 4 4 5 0 4
    GFB234-15(Pigm+Pi-d2+ Pi-d3) 4 4 4 5 3 4
    下载: 导出CSV
  • [1] 兰新芝.稻瘟病及综合防控技术[J].农民致富之友, 2013(6):122-122. http://d.old.wanfangdata.com.cn/Periodical/nmzfzy201306101
    [2] 杨海河, 毕冬玲, 张玉, 等.基于CRISPR/Cas9技术的水稻pi21基因编辑材料的创制及稻瘟病抗性鉴定[J].分子植物育种, 2017, 15(11):4451-4465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201711019
    [3] 沈兰, 华宇峰, 付亚萍, 等.利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J].中国科学:生命科学, 2017, 47(11):1186-1195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201711007
    [4] 胡雪娇, 杨佳, 程灿, 等.利用CRISPR/Cas9系统定向编辑水稻SD1基因[J].中国水稻科学, 2018, 32(3):219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201803002
    [5] SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system.[J]. Nature Biotechnology, 2013, 31(8):686-688. doi: 10.1038/nbt.2650
    [6] ZHEN, LIANG, KANG, et al. Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System[J]. Journal of Genetics and Genomics, 2014, 41(2):63-68. doi: 10.1016/j.jgg.2013.12.001
    [7] WANG Y, CHENG X, SHAN Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951. doi: 10.1038/nbt.2969
    [8] BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System[J]. Plant Physiology, 2014,166(3):1292-7. doi: 10.1104/pp.114.247577
    [9] 黄利兴, 张以华, 游年顺, 等.抗稻瘟病水稻不育系谷丰A的选育与利用[J].杂交水稻, 2013, 28(5):6-10. http://www.cnki.com.cn/Article/CJFDTotal-ZJSD201305002.htm
    [10] 高利军, 邓国富, 高汉亮, 等.水稻抗稻瘟病基因Pi-d2基因标签的建立与应用[J].西南农业学报, 2010, 23(1):77-82. doi: 10.3969/j.issn.1001-4829.2010.01.017
    [11] SHANG J, TAO Y, CHEN X, et al. Identification of a New Rice Blast Resistance Gene, Pid3, by Genomewide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes[J]. Genetics, 2009,182(4):1303-1311. doi: 10.1534/genetics.109.102871
    [12] 曾生元, 龚红兵, 李闯, 等.谷梅4号抗稻瘟病基因Pigm的分子标记及其应用: 中国CN 106148335A[P].2016-09-26.
    [13] ZHOU B, QU S, LIU G, et al. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11):1216-1228. doi: 10.1094/MPMI-19-1216
    [14] HUA L, WU J, CHEN C, et al. The isolation of Pi1, an allele at the Piklocus which confers broad spectrum resistance to rice blast[J]. Theoretical & Applied Genetics, 2012,125(5):1047-1055. doi: 10.1007/s00122-012-1894-7?view=classic
    [15] ZHAI C, LIN F, DONG Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011,189(1):321-334. doi: 10.1111/j.1469-8137.2010.03462.x
    [16] 曾栋昌, 马兴亮, 谢先荣, 等.植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J].中国科学:生命科学, 2018, 48(7):783-794. http://www.cnki.com.cn/Article/CJFDTotal-JCXK201807008.htm
    [17] 张凤娟, 张满良, 朱水芳.一种改进的水稻总DNA的快速提取方法[J].植物检疫, 2004(6):330-332. doi: 10.3969/j.issn.1005-2755.2004.06.004
    [18] IRRI. Standard evaluation system for rice[M]. Manila: 1996: 17-18.
    [19] LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.[J]. Nat Plants, 2016, 2(10):16139. doi: 10.1038/nplants.2016.139
    [20] ZHANG Y, BAI Y, WU G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. Plant Journal for Cell & Molecular Biology, 2017, 91(4):714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a1226d6a532dec52629e1898e48e3ad
    [21] WANG F, WANG C, LIU P, et al. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922[J]. Plos One, 2016, 11(4):e0154027. doi: 10.1371/journal.pone.0154027
    [22] 王芳权, 范方军, 李文奇, 等.利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析[J].中国水稻科学, 2016, 30(5):469-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201605004
    [23] BOLLER T, FELIX G. A Renaissance of Elicitors:Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors[J]. Annual Review of Plant Biology, 2009, 60(1):379-406. doi: 10.1146/annurev.arplant.57.032905.105346
    [24] NURNBERGER THORSTEN, BRUNNER FRÉDÉRIC, KEMMERLING B, et al. Innate immunity in plants and animals:striking similarities and obvious differences[J]. Immunological Reviews, 2010,198(1):249-266. doi: 10.1111/j.0105-2896.2004.0119.x?globalMessage=0
    [25] JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.[J]. Embo Journal, 2014, 19(15):4004-4014. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_306585
    [26] WU W, WANG L, ZHANG S, et al. Stepwise Arms Race Between AvrPik and Pik Alleles in the Rice Blast Pathosystem[J]. Mol Plant Microbe Interact, 2014, 27(8):759-769. doi: 10.1094/MPMI-02-14-0046-R
    [27] OKUYAMA Y, KANZAKI H, ABE A, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes.[J]. Plant Journal, 2011, 66(3):467-479. doi: 10.1111/j.1365-313X.2011.04502.x
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  1195
  • HTML全文浏览量:  150
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-13
  • 修回日期:  2018-12-10
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回