• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响

连玲 许惠滨 何炜 朱永生 潘丽燕 魏毅东 郑燕梅 罗曦 谢华安 张建福

连玲, 许惠滨, 何炜, 朱永生, 潘丽燕, 魏毅东, 郑燕梅, 罗曦, 谢华安, 张建福. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. doi: 10.19303/j.issn.1008-0384.2019.03.001
引用本文: 连玲, 许惠滨, 何炜, 朱永生, 潘丽燕, 魏毅东, 郑燕梅, 罗曦, 谢华安, 张建福. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. doi: 10.19303/j.issn.1008-0384.2019.03.001
LIAN Ling, XU Hui-bing, HE Wei, ZHU Yong-sheng, PAN Li-yan, WEI Yi-dong, ZHENG Yan-mei, LUO Xi, XIE Hua-an, ZHANG Jian-fu. Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. doi: 10.19303/j.issn.1008-0384.2019.03.001
Citation: LIAN Ling, XU Hui-bing, HE Wei, ZHU Yong-sheng, PAN Li-yan, WEI Yi-dong, ZHENG Yan-mei, LUO Xi, XIE Hua-an, ZHANG Jian-fu. Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. doi: 10.19303/j.issn.1008-0384.2019.03.001

PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响

doi: 10.19303/j.issn.1008-0384.2019.03.001
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2016R1020-8

国家重点研发计划项目 2016YFD0101801

详细信息
    作者简介:

    连玲(1983-), 女, 硕士, 助理研究员, 主要从事水稻分子生物学与分子育种研究(E-mail:lianling51@163.com)

    通讯作者:

    谢华安(1941-), 男, 研究员, 主要从事杂交水稻育种研究(E-mail:huaanxie@163.com)

    张建福(1971-), 男, 博士, 研究员, 主要从事水稻分子设计育种研究(E-mail:jianfzhang@163.com)

  • 中图分类号: S511

Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress

  • 摘要:   目的  干旱是影响水稻生产的重要环境因素之一,在干旱条件下水稻植株体内会发生一系列的抗逆反应,其中参与防御反应的关键酶基因表达会发生明显的变化。因此,本研究拟分析干旱胁迫处理后抗氧化酶类基因的表达变化,为进一步研究水稻抗旱机制提供理论参考。  方法  采用质量体积比为0(CK)、18%、20%、22%、24%、26%的聚乙二醇(PEG6000)对三叶一心期的籼稻航2号植株进行干旱胁迫处理,筛选适合处理籼稻航2号的PEG6000质量体积比;进一步采用PEG6000对航2号植株进行干旱胁迫处理,分别于处理0、2、4、8、12、24、48、72 h取样;并用SYBR Green I荧光定量PCR(qRT-PCR)分析PEG6000处理不同时间段后植株中抗氧化酶类基因表达,包括过氧化氢酶(CATACATBCATC)、过氧化物酶(POX5.1、POX1)、超氧化物歧化酶(plastidic Cu/Zn-SOD,cytosolic Cu/Zn-SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)基因的表达变化。  结果  根据表型观察和植株存活率,筛选出籼稻航2号对PEG6000的耐受临界质量体积比为22%;qRT-PCR结果表明PEG6000胁迫处理后9个基因的表达均出现上调,大部分基因表达都呈先上调后下调的趋势,且一般PEG处理4 h之后基因表达出现较明显上调,说明这些基因均不同程度地参与了PEG胁迫反应;其中,过氧化氢酶A基因(CATA)表达变化最显著,处理8 h表达量上调至处理0 h的28倍。  结论  PEG6000胁迫处理后主要的抗氧化酶类基因表达发生了明显的变化。
  • 图  1  不同浓度PEG6000处理航2号植株情况

    注:每幅图从左到右营养液中PEG6000的质量体积比分别为0%(CK)、18%、20%、22%、24%、26%;处理时间A: 0 h,B: 3 h,C: 24 h,D: 48 h,E: 72 h,F: 96 h,G: 7 d,H:恢复生长8 d。

    Figure  1.  Hang 2 plants treated by varying concentrations of PEG6000

    Note: PEG600 concentrations in photos from left to right are 0% (CK), 18%, 20%, 22%, 24% and 26%; treatment time A=0 h, B=3 h, C=24 h, D=48 h, E=72 h, F=96 h, G=7 d, H=recovery after 8 d.

    图  2  植物总RNA的提取

    Figure  2.  Extraction of total RNA from rice plants

    图  3  Actin150和eIf4a的RT-PCR扩增

    Figure  3.  RT-PCR amplifications of Actin150 and eIf4a

    图  4  抗氧化酶基因的RT-PCR扩增

    注:pla SODplastidic Cu/Zn-SOD; cyt SODcytosolic Cu/Zn-SOD

    Figure  4.  RT-PCR amplifications of antioxidant enzyme genes

    Note: pla SOD:plastidic Cu/Zn-SOD; cyt SOD:cytosolic Cu/Zn-SOD

    图  5  qRT-PCR分析抗氧化酶基因的表达情况

    注:A为过氧化氢酶A基因表达量,B为过氧化氢酶B基因表达量,C为过氧化氢酶C基因表达量,D为过氧化物酶5基因表达量,E为过氧化物酶1基因表达量,F为质体铜/锌超氧化物歧化酶基因表达量,G为细胞质铜/锌超氧化物歧化酶基因表达量,H为抗坏血酸过氧化物酶基因的表达量,I为谷胱甘肽还原酶基因的表达量。

    Figure  5.  Expression analysis on antioxidant enzyme genes by qRT-PCR

    Note:A:The relative expression of CATA, B:The relative expression of CATB, C:The relative expression of CATC, D:The relative expression of POX 5.1, E:The relative expression of POX 1, F:The relative expression of plastidic Cu/Zn-SOD, G:The relative expression of cytosolic Cu/Zn-SOD, H:The relative expression of APX, I:The relative expression of GR.

    表  1  抗氧化酶基因引物序列

    Table  1.   Primers of antioxidant enzyme genes

    基因名称
    Gene names
    上游引物F/下游引物R(5′-3′)
    Upstream primer F/Downstream primer R
    产物大小
    Product/bp
    过氧化氢酶A基因CATAF:GAGGAGGCAGAAGGCGACGATA
    R:CCCCCAACGACTCATCACACTG
    194
    过氧化氢酶B基因CATBF:GACGGATGGTCCTGAACAAAAACA
    R:CAAGACGGTGCCTTTGGGTATCA
    159
    过氧化氢酶C基因CATCF:CTTCCCCGTCTTCTTCATCCGC
    R:TCGTCGAAGAGGAAGGTGAACAT
    159
    过氧化物酶5基因POX5.1F:ACTTGGTTGCTCTCTCAGGTGCG
    R:GGTGGGCGTCGTCGTGTC
    182
    过氧化物酶1基因POX1F:ACTCGTGCCCCAAGGCGAAGGA
    R:GCTGTTGTCCAGGAGCACAGACG
    149
    质体铜/锌超氧化物歧化酶基因plastidic Cu/Zn-SODF:CCACCTCCACGAGTTTGGCGAT
    R:CTCAGCTACACCTTCAGCATTGGC
    154
    细胞质铜/锌超氧化物歧化酶基因cytosolic Cu/Zn-SODF:GGAAATGTCACCGCTGGAGAAG
    R:AACGACGGCTCTGCCAATGATT
    102
    抗坏血酸过氧化物酶基因APXF:CTGCCGTCCCCTTCCACCCA
    R:CCGCCAGAGAGGGCAACAAT
    154
    谷胱甘肽还原酶基因GRF:TTCCTCCAAAGCCTGCTGTTCACT
    R:GCCAGCCAACTAAACCTGATTACA
    101
    内参基因,真核起始因子eIf4aF:TTGTGCTGGATGAAGCTGATG
    R:GGAAGGAGCTGGAAGATATCATAGA
    76
    内参基因,肌动蛋白基因Actin150F:AGTGTCTGGATTGGAGGAT
    R:TCTTGGCTTAGCATTCTTG
    150
    下载: 导出CSV

    表  2  不同质量体积比的PEG6000处理后植株存活率

    Table  2.   Plant survival rates after PEG6000 treatments in different mass and volume ratios

    PEG质量体积比
    Mass and volume
    ratio of PEG/%
    植株数量
    Plant
    number
    存活的
    植株数量
    Survival plant
    存活率
    Survival
    rate/%
    02525100
    182525100
    202525100
    2225312
    242500
    262500
    下载: 导出CSV
  • [1] 匡勇, 夏石头.干旱对水稻生长发育的影响及提高水稻抗旱性的途径[J].北京农业, 2007(36):8-14. doi: 10.3969/j.issn.1000-6966.2007.36.003

    KUANG Y, XIA S T. Effects of drought on growth and development and approachs to promoting droughtresistance of rice[J].Beijing Agriculture, 2007(36):8-14.(in Chinese) doi: 10.3969/j.issn.1000-6966.2007.36.003
    [2] SALEHI S P, IZADPANAH M, FALAH H L, et al.Comparison of the effects of drought stress on pigments, peroxidase, osmotic adjustment and antioxidant enzymes in different accessions of anthemistinctoria and tripleurospermum servanes of natural resources gene bank of iran[J].En Journals, 2015:126-139.
    [3] 蒋明义, 郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996, 32(2):144-150. http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024

    JIANG M Y, GUO S C. Oxidative stress and antioxidation induced by water deficiency in plants[J].Plant Physiology Communications, 1996, 32(2):144-150.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024
    [4] BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1):83-116. doi: 10.1146/annurev.pp.43.060192.000503
    [5] APEL K, HIRT H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373-399. doi: 10.1146/annurev.arplant.55.031903.141701
    [6] NOCTOR G, FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J].Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1):249-279. doi: 10.1146/annurev.arplant.49.1.249
    [7] AMUDHA J, BALASUBRAMANI G. Recent molecular advances to combat abiotic stresstolerance in crop plants[J]. Biotechnol Mol Biol Rev, 2011(6):31-58.
    [8] MORITA S, TASAKA M, FUJISAWA H, et al. A cDNA clone encoding a rice catalase isozyme[J]. Plant Physiol, 1994, 105(3):1015-1016. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_160753
    [9] HIGO K, HIGO H. Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene[J]. Plant Molecular Biology, 1996, 30(3):505-521. doi: 10.1007/BF00049328
    [10] AGRAWAL G K, RAKWAL R, JWA N S. Stress signaling molecules involved in defense and protein phosphatase 2A inhibitorsmodulate OsCATC expression in rice (Oryza sativa) seedlings[J].Journal of Plant Physiology, 2001, 158(10):1349-1355. doi: 10.1078/0176-1617-00607
    [11] KIM S H, CHOI H S, CHO Y C, et al. Cold-Responsive Regulation of a Flower-Preferential Class Ⅲ Peroxidase Gene, OsPOX1, in Rice (Oryzasativa L.)[J]. Journal of Plant Biology, 2012, 55(2):123-131. doi: 10.1007/s12374-011-9194-3
    [12] SASAKI K, IWAI T, HIRAGA S, et al. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus[J]. Plant & Cell Physiology, 2004, 45(10):1442-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002825548
    [13] ALSCHER R G, ERTURK N, HEATH L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 2002, 53(372):1331-1341. doi: 10.1093/jexbot/53.372.1331
    [14] PRAKASH S R, SAMANT A, PRASHAR V, et al.Biochemical and functional characterization of OsCSD3, a novel CuZn superoxidedismutase from rice[J].Biochemical Journal, 2018, 475(19):3105-3121. doi: 10.1042/BCJ20180516
    [15] TEIXEIRA F K, MENEZES-BENAVENTE L, GALVÃO V C, et al.Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments[J].Planta, 2006, 224(2):300-314. doi: 10.1007/s00425-005-0214-8
    [16] NOCTOR G, FOYER C H. Ascorbate and glutathione:keepingactive oxygen under control[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49(1):249-279. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210504163/
    [17] BASHIR K, NAGASAKA S, ITAI R N, et al. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants[J]. Plant Molecular Biology, 2007, 65(3):277-284. doi: 10.1007/s11103-007-9216-1
    [18] ROUHIER N I, COUTURIER J, JACQUOT J P. Genome-wide analysis of plant glutaredoxin systems[J]. Journal of Experimental Botany, 2006, 57(8):1685-1696. doi: 10.1093/jxb/erl001
    [19] 杨春杰, 张学昆, 邹崇顺, 等.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响[J].中国油料作物学报, 2007, 29(4):425-430. doi: 10.3321/j.issn:1007-9084.2007.04.013

    YANG C J, ZHANG X K, ZOU C S, et al. Effects of drought simulated by PEG-6000 on germination and seedling growth of rapeseed(Brassica napus L.)[J].Chinese Journal of Oil Crop Sciences, 2007, 29(4):425-430.(in Chinese) doi: 10.3321/j.issn:1007-9084.2007.04.013
    [20] 李雪妹, 刘畅, 刘倩雯, 等.PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J].作物杂志, 2016(6):107-111. http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018

    LI X M, LIU C, LIU Q W, et al. The effect of PEG pretreatment on expression of antioxidant isozymes of rice leaves under water stress[J]. Crops, 2016(6):107-111.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018
    [21] 陈美静, 刘倚雯, 张宝龙, 等.不同预处理对P EG胁迫下水稻幼苗抗氧化系统的影响[J], 江苏农业科学, 2015, 43(8):76-78. http://d.wanfangdata.com.cn/Periodical/jsnykx201508025

    CHEN M J, LIU Y W, ZHANG B L, et al. The effect of different pretreatment on rice antioxidant system under PEG stress[J]. Jiangsu Agricultural Sciences, 2015, 43(8):76-78.(in Chinese) http://d.wanfangdata.com.cn/Periodical/jsnykx201508025
    [22] 戴高兴, 彭克勤, 萧浪涛, 等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学, 2006, 20(5):557-559. doi: 10.3321/j.issn:1001-7216.2006.05.018

    DAI G X, PENG K Q, XIAO L T, et al. Effect of drought stress simulated by peg on m alonaldehyde, proline contents andsuperoxide dismutase activity in low potassium tolerant rice seedlings[J]. Chinese J Rice Sci, 2006, 20(5):557-559.(in Chinese) doi: 10.3321/j.issn:1001-7216.2006.05.018
    [23] 张小娟, 宋涛, 甄晓辉, 等.模拟干旱胁迫对转C4双基因水稻幼苗光合功能及部分抗氧化酶活性的影响[J].江苏农业学报, 2014, 30(4):709-715. http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003

    ZHANG X J, SONG T, ZHEN X H, et al. Impact of simulated drought stress on photosynthesis and activities of someantioxidant enzymes of transgenic rice seedlings harboring maize PEPCand PPDK genes[J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(40):709-715.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1624
  • HTML全文浏览量:  265
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-04
  • 修回日期:  2019-02-26
  • 刊出日期:  2019-03-28

目录

    /

    返回文章
    返回