• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双孢蘑菇6个菌株不同发育阶段的转录组分析

施肖堃 卢园萍 蔡志欣 郭仲杰 陈美元 廖剑华

施肖堃, 卢园萍, 蔡志欣, 郭仲杰, 陈美元, 廖剑华. 双孢蘑菇6个菌株不同发育阶段的转录组分析[J]. 福建农业学报, 2019, 34(7): 775-781. doi: 10.19303/j.issn.1008-0384.2019.07.004
引用本文: 施肖堃, 卢园萍, 蔡志欣, 郭仲杰, 陈美元, 廖剑华. 双孢蘑菇6个菌株不同发育阶段的转录组分析[J]. 福建农业学报, 2019, 34(7): 775-781. doi: 10.19303/j.issn.1008-0384.2019.07.004
SHI Xiao-kun, LU Yuan-ping, CAI Zhi-xin, GUO Zhong-jie, CHEN Mei-yuan, LIAO Jian-hua. Transcriptome Sequencing on Six Agaricus bisporus Strains at Four Developmental Stages[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 775-781. doi: 10.19303/j.issn.1008-0384.2019.07.004
Citation: SHI Xiao-kun, LU Yuan-ping, CAI Zhi-xin, GUO Zhong-jie, CHEN Mei-yuan, LIAO Jian-hua. Transcriptome Sequencing on Six Agaricus bisporus Strains at Four Developmental Stages[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 775-781. doi: 10.19303/j.issn.1008-0384.2019.07.004

双孢蘑菇6个菌株不同发育阶段的转录组分析

doi: 10.19303/j.issn.1008-0384.2019.07.004
基金项目: 

福建省农业科学院博士基金项目 DC2018-4

国家现代农业产业技术体系专项资金 CARS20

福建省科技计划项目——省属公益类科研院所基本科研专项 2019R1035-2

福建省种业创新与产业化工程项目 fjzycxny2017009

福建省财政专项——福建省农业科学院科技创新团队建设项目 STIT2017-1-6

详细信息
    作者简介:

    施肖堃(1984-), 男, 硕士, 助理研究员, 主要从事食用菌遗传育种研究(E-mail:39094061@qq.com)

    通讯作者:

    陈美元(1972-), 男, 博士, 教授级高工, 主要从事食用菌遗传育种研究(E-mail:cmy1972@gmail.com)

  • 中图分类号: S646.11

Transcriptome Sequencing on Six Agaricus bisporus Strains at Four Developmental Stages

  • 摘要:   目的  通过多个双孢蘑菇菌株不同发育阶段的差异转录组分析,为进一步验证双孢蘑菇发育相关基因及探讨其分子机理奠定基础。  方法  对双孢蘑菇主栽品种As2796及其亲本02、8213,其回交子代W192,以及国外野生菌株ARP159、国内野生菌株AgLH830共6个具有重要代表性的菌株子实体原基期、幼菇期、采摘期、开伞期等4个不同发育阶段共24个样品进行转录组测序,并与双孢蘑菇参考基因组序列进行比对,根据比对结果进行各基因在不同样品中的表达量分析及差异表达基因识别,发掘新基因与共同基因的差异表达,并进行各数据库的基因功能注释。  结果  结果共鉴定到10 660个转录本,发掘新基因677个,其中237个得到功能注释。与原基期相比,6个菌株在幼菇期、采摘期和开伞期分别有49、82、73个共同差异表达基因,其中有13个是相同的基因。  结论  发现了一批在双孢蘑菇子实体不同发育阶段具有显著差异表达的基因,筛选出不同菌株不同阶段的共有差异基因,对双孢蘑菇子实体发育中重要的差异基因进行了注释与探讨。
  • 图  1  双孢蘑菇6个菌株原基期与幼菇期共同差异表达基因的COG分类

    Figure  1.  COG annotation of common DEGs between primordium and young stages in 6 strains of A. bisporus

    图  2  双孢蘑菇6个菌株原基期与幼菇期共同差异表达基因的GO富集分析

    Figure  2.  GO enrichment analysis of common DEGs between primordium and young stages in 6 strains of A. bisporus

    图  3  双孢蘑菇6个菌株原基期与幼菇期共同差异表达基因的KEGG通路类型

    Figure  3.  KEGG pathway of common DEGs between primordium and young stages in 6 strains of A. bisporus

    表  1  样品测序数据及与参考基因组的序列比对结果统计

    Table  1.   Statistics of experimental data and alignment with reference on genome sequence

    编号
    ID
    样品
    Samples
    总片读数
    Total reads
    匹配片读数
    Mapped reads
    匹配读段
    Mapped reads/%
    ≥Q30的百分比
    ≥Q30 Percenlagel/%
    GC含量
    GC Content/%
    T01 2796原基 35666572 26745594 74.99 87.10 49.06
    T02 2796幼菇 35313022 27062540 76.64 86.34 49.39
    T03 2796采收 38280048 29421017 76.86 86.59 49.27
    T04 2796开伞 38250636 28047724 73.33 86.57 49.55
    T05 02原基 33427134 28017783 83.82 86.06 49.26
    T06 02幼菇 35819542 30247728 84.44 87.01 49.44
    T07 02采收 34688248 29636455 85.44 88.16 49.49
    T08 02开伞 31922230 26803817 83.97 86.88 49.51
    T09 192原基 34556016 27403923 79.30 89.03 49.45
    T10 192幼菇 33710834 26856893 79.67 88.61 49.41
    T11 192采收 33484752 26652110 79.59 88.04 49.63
    T12 192开伞 35109700 27405076 78.06 87.62 49.59
    T13 8213原基 62520314 44230857 70.75 91.10 49.87
    T14 8213幼菇 37020010 28479519 76.93 87.00 49.36
    T15 8213采收 48831096 37862207 77.54 91.00 49.92
    T16 8213开伞 33504694 25964053 77.49 89.57 49.49
    T17 AgLH830原基 46629820 33805235 72.50 91.37 49.90
    T18 AgLH830幼菇 37064508 25651715 69.21 90.87 50.06
    T19 AgLH830采收 60230312 43341259 71.96 92.94 49.64
    T20 AgLH830开伞 59003490 42371223 71.81 93.21 49.65
    T21 ARP159原基 58535934 43943896 75.07 93.01 49.41
    T22 ARP159幼菇 57898228 42151349 72.80 92.16 49.80
    T23 ARP159采收 50652184 37439256 73.91 91.69 49.66
    T24 ARP159开伞 52116880 37313086 71.60 90.30 49.72
    下载: 导出CSV

    表  2  新基因功能注释结果统计

    Table  2.   Number of new genes with functional annotation

    注释数据库
    Annotated databases
    新基因数目
    New gene number
    GO 14
    COG 10
    KEGG 25
    Swiss-Prot 24
    NR 236
    All 237
    下载: 导出CSV

    表  3  差异表达基因数目统计

    Table  3.   Number of DEGs

    差异表达基因集
    DEG Set
    差异表达基因总数
    All DEGs
    上调基因数目
    up-regulated DEGs
    下调基因数目
    down-regulated DEGs
    T01_vs_T02 632 168 464
    T01_vs_T03 790 241 549
    T01_vs_T04 843 378 465
    T05_vs_T06 866 499 367
    T05_vs_T07 951 467 484
    T05_vs_T08 892 501 391
    T09_vs_T10 665 197 468
    T09_vs_T11 784 297 487
    T09_vs_T12 864 432 432
    T13_vs_T14 724 325 399
    T13_vs_T15 816 357 459
    T13_vs_T16 904 403 501
    T17_vs_T18 597 238 359
    T17_vs_T19 1012 486 526
    T17_vs_T20 806 310 496
    T21_vs_T22 673 227 446
    T21_vs_T23 813 302 511
    T21_vs_T24 870 499 371
    下载: 导出CSV

    表  4  注释的差异表达基因数量统计

    Table  4.   Number of annotated DEGs

    差异表达基因集
    DEG Set
    获注释DEG
    Annotated DEG
    注释数据库Annotated databases
    GO COG KEGG Swiss-Prot NR
    T01_vs_T02 607 214 249 157 307 607
    T01_vs_T03 764 263 301 201 376 764
    T01_vs_T04 823 324 348 262 430 823
    T05_vs_T06 841 361 378 360 502 841
    T05_vs_T07 908 358 389 334 503 908
    T05_vs_T08 839 320 331 267 419 839
    T09_vs_T10 649 254 270 193 353 649
    T09_vs_T11 759 283 320 215 397 759
    T09_vs_T12 844 316 348 237 422 844
    T13_vs_T14 712 313 328 309 424 712
    T13_vs_T15 797 324 350 287 438 797
    T13_vs_T16 870 323 364 266 447 870
    T17_vs_T18 581 222 256 160 302 581
    T17_vs_T19 973 315 360 250 440 972
    T17_vs_T20 781 325 349 250 421 781
    T21_vs_T22 658 292 318 234 395 658
    T21_vs_T23 796 342 376 271 466 796
    T21_vs_T24 854 363 387 298 487 854
    下载: 导出CSV

    表  5  双孢蘑菇子实体发育阶段共同差异基因及在菌株As2796中的表达量

    Table  5.   Thirteen common DEGs among 6 strains of A. bisporus at 4 developmental stages and their expression levels in As2796

    基因编号
    Gene ID
    相对表达量FPKM 基因长度
    Length/bp
    基因注释
    Annotation
    T01 T02 T03 T04
    estExt_fgenesh2_kg.C_50657 2800.3 363.3 111.4 199.6 2497 para-aminobenzoate synthetase
    e_gw1.3.1175.1 189.9 16.7 8.2 9.3 1459 Null
    estExt_Genewise1.C_180108 644.4 31.9 13.2 43.8 1014 sterigmatocystin biosynthesis
    peroxidase stcC (Precursor)
    fgenesh2_pm.2_863 469.9 74.9 39.3 48.1 4105 Long-chain-fatty-acid-CoA ligase
    estExt_fgenesh2_pg.C_20058 172.0 11.6 31.4 5.4 1224 Null
    estExt_Genewise1.C_51672 301.1 24.0 8.4 32.8 2719 transcriptional enhancer factor
    estExt_fgenesh2_kg.C_50125 191.4 34.0 12.7 10.4 3434 Null
    e_gw1.1.1627.1 84.8 18.7 16.0 13.2 557 Null
    estExt_Genewise1Plus.C_160094 38.8 5.4 4.4 3.3 2329 O-methylsterigmatocystin oxidoreductase
    estExt_Genewise1Plus.C_60597 492.6 50.8 34.4 87.3 6696 Zinc/cadmium resistance protein
    estExt_fgenesh2_pg.C_180054 41.7 1.8 0.2 4.3 453 Null
    estExt_fgenesh2_pm.C_170010 28.2 1.6 0.7 0.3 2198 Uncharacterized transporter
    estExt_fgenesh2_kg.C_10275 117.6 955.7 1528.6 1515.5 2478 aminodeoxychorismate synthase
    下载: 导出CSV
  • [1] PLAZA D F, LIN C W, van der VELDEN N S J, et al.Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development[J]. BMC Genomics, 2014, 15(1):492-509. doi: 10.1186/1471-2164-15-492
    [2] TEICHERT I, WOLFF G, KVCK U, et al. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development[J]. BMC Genomics, 2012, 13(1):511-529. doi: 10.1186/1471-2164-13-511
    [3] 杨芳, 许波, 李俊俊, 等.鸡枞菌转录组分析揭示其对木质纤维素的降解功能[J].微生物学报, 2012, 52(4):466-477. http://d.old.wanfangdata.com.cn/Periodical/wswxb201204008

    YANG F, XU B, LI J J, et al. Transcriptome analysis of Termitomyces albuminosus reveals the biodegradation of lignocellulose[J]. Acta Microbiologica Sinica, 2012, 52(4):466-477.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wswxb201204008
    [4] CHEN L F, GONG Y H, CAI Y L, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation[J]. PloS One, 2016, 11(8), e0160336.
    [5] FU Y P, DAI Y T, YANG C T, et al.Comparative transcriptome analysis identified candidate genes related to Bailinggu mushroom formation and genetic markers for genetic analyses and breeding[J].Scientific Reports, 2017, 7(1):9266. doi: 10.1038/s41598-017-08049-z
    [6] 陈美元.双孢蘑菇子实体原基与菇蕾蛋白质表达变化分析[J], 食用菌学报, 2012, 19(3):15-20. doi: 10.3969/j.issn.1005-9873.2012.03.002

    CHEN M Y. Differential Expression of Proteins During the Primordium and Button Stages of Agaricus bisporus[J]. Acta Edulis Fungi, 2012, 19(3):15-20.(in Chinese) doi: 10.3969/j.issn.1005-9873.2012.03.002
    [7] 陈美元, 廖剑华, 李洪荣, 等.双孢蘑菇子实体发育后期差异表达蛋白质分析[J], 菌物学报, 2013, 32(5):855-861. http://d.old.wanfangdata.com.cn/Periodical/jwxt201305011

    CHEN M Y, LIAO J H, LI H R, et al. Analysis of differentially expressed proteins in later developing stage fruitbody of Agaricus bisporus[J]. Mycosystema, 2013, 32(5):855-861.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jwxt201305011
    [8] 陈美元, 廖剑华, 李洪荣, 等.双孢蘑菇子实体发育差异蛋白质组分析[J], 菌物学报, 2015, 34(6):1153-1164. http://d.old.wanfangdata.com.cn/Conference/8302645

    CHEN M Y, LIAO J H, LI H R, et al. Developmental proteomics analysis of the button mushroom Agaricus bisporus[J]. Mycosystema, 2015, 34(6):1153-1164.(in Chinese) http://d.old.wanfangdata.com.cn/Conference/8302645
    [9] CHEN M Y, LIAO J H, LI H R, et al. iTRAQ-MS/MS proteomic analysis reveals differentially expressed proteins during post-harvest maturation of the white button mushroom Agaricus bisporus[J]. Current Microbiology, 2017, 74(5):641-649. doi: 10.1007/s00284-017-1225-y
    [10] 施肖堃, 蔡志欣, 郭仲杰, 等.双孢蘑菇As2796子实体发育转录组测序分析[J], 福建农业学报, 2018, 33(3):282-287. doi: 10.19303/j.issn.1008-0384.2018.03.012

    SHI X K, CAI Z X, GUO Z J, et al. Analysis of Agaricus bisporus Fruitbody Development by Transcriptome Sequencing[J]. Fujian Journal of Agricultural Sciences, 2018, 33(3):282-287.(in Chinese) doi: 10.19303/j.issn.1008-0384.2018.03.012
    [11] 蔡丹凤, 蔡志欣, 陈美元, 等.茯苓菌落褐变的转录组测序分析[J], 广州中医药大学学报, 2017, 34(2):245-249. http://d.old.wanfangdata.com.cn/Periodical/gzzyydxxb201702023

    CAI D F, CAI Z X, CHEN M Y, et al. Analysis of Poria cocos Mycelia Browning by Transcriptome Sequencing[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2017, 34(2):245-249.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzzyydxxb201702023
    [12] MORTAZAVI A, WILLIAMS B A, McCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621-628. doi: 10.1038/nmeth.1226
    [13] KIM D, PERTEA G, TRAPNELL C, et al. TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology, 2013, 14:R36. doi: 10.1186/gb-2013-14-4-r36
    [14] ALTSCHUL S F, MADDEN T L, ZHANG J, et al. Gapped BLAST and PSI BLAST:A New Generation of Protein Database Search Programs[J]. Nucleic Acids Research, 1997, 25(17):3389-3402. doi: 10.1093/nar/25.17.3389
    [15] TATUSOV R L, GALPERIN M Y, NATALE D A. The COG database:a tool for genome scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1):33-36. doi: 10.1093/nar/28.1.33
    [16] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29. doi: 10.1038/75556
    [17] KOONIN E V, FEDOROVA N D, JACKSON J D, et al.A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J].Genome Biology, 2004, 5(2):77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000000816692
    [18] APWEILER R, BAIROCH A, WU C H, et al. UniProt:the universal protein knowledgebase[J]. Nucleic acids research, 2004, 32:115-119. doi: 10.1093/nar/gkh151
    [19] DENG Y Y, LI J Q, WU S F, et al. Integrated nr Database in Protein Annotation System and Its Localization[J]. Computer Engineering, 2006, 32(5):71-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200605026
    [20] HANSEN K D, WU Z J, IRIZARRY R A, et al. Sequencing technology does not eliminate biological variability[J]. Nature Biotechnology, 2011, 29(7):572-573. doi: 10.1038/nbt.1910
    [21] 吴小梅, 张昕, 李南羿.双孢蘑菇子实体不同发育时期的转录组分析[J].菌物学报, 2017, 36(2):193-203. http://d.old.wanfangdata.com.cn/Periodical/jwxt201702007

    WU X M, ZHANG X, LI N Y. Transcriptome analysis of Agaricus bisporus fruiting at different stages[J]. Mycosystema, 2017, 36(2):193-203.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jwxt201702007
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1594
  • HTML全文浏览量:  397
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-12
  • 修回日期:  2019-05-14
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回