• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

番茄SlSIP1L12基因负调控种子萌发的研究

崔宝禄 陈国平

崔宝禄,陈国平. 番茄 SlSIP1L12基因负调控种子萌发的研究 [J]. 福建农业学报,2021,36(2):168−175 doi: 10.19303/j.issn.1008-0384.2021.02.005
引用本文: 崔宝禄,陈国平. 番茄 SlSIP1L12 基因负调控种子萌发的研究 [J]. 福建农业学报,2021,36(2):168−175 doi: 10.19303/j.issn.1008-0384.2021.02.005
CUI B L, CHEN G P. Correlation between SlSIP1L12 Expression and Seed Germination of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2021,36(2):168−175 doi: 10.19303/j.issn.1008-0384.2021.02.005
Citation: CUI B L, CHEN G P. Correlation between SlSIP1L12 Expression and Seed Germination of Tomato Plants [J]. Fujian Journal of Agricultural Sciences,2021,36(2):168−175 doi: 10.19303/j.issn.1008-0384.2021.02.005

番茄SlSIP1L12基因负调控种子萌发的研究

doi: 10.19303/j.issn.1008-0384.2021.02.005
基金项目: 国家自然科学基金(31960605);贵州省教育厅拔尖人才项目(黔教合[2016]111);贵州省科技厅基础研究计划项目([2018]1144);贵州省植物学重点支持学科项目(qnsyzw1802);黔南民族师范学院重大科研创新基金项目(QNSY2018BS019、QNSY2018PT001)
详细信息
    作者简介:

    崔宝禄(1979−),男,博士,副教授,研究方向:植物分子生物学(E-mail:cuibaolu98@163.com

  • 中图分类号: Q 789

Correlation between SlSIP1L12 Expression and Seed Germination of Tomato Plants

  • 摘要:   目的  鉴定番茄中Trihelix转录因子SIP1亚家族SlSIP1L12基因的生物功能,  方法  利用RT-PCR分析了SlSIP1L12基因的表达模式、对外源激素和非生物胁迫的响应;利用RNAi干扰技术获得了SlSIP1L12转基因植株,利用ELISA鉴定转基因种子体内ABA的含量。  结果  (1)基因克隆分析表明:番茄AC++中,SlSIP1L12基因编码长度为1 125bp,编码374个氨基酸;进化分析表明,番茄SlSIP1L12基因进化明显。(2)表达模式证实:SlSIP1L12基因主要在茎、成熟叶中表达,花和果实中次之。(3)外源处理显示:SlSIP1L12受外源激素ABA和脱水胁迫诱导,说明SlSIP1L12功能与ABA有关。(4)SlSIP1L12转基因株系的种子发芽速度快于对照;相同条件下,胚根伸长速度明显比对照快。(5)发芽7 d时,转基因种子体内ABA含量明显小于对照。  结论  SlSIP1L12基因负调控番茄种子萌发的机制与ABA含量密切相关。
  • 图  1  番茄果实不同发育时期

    注:IMG:未成熟果实;MG:成熟果实;B:Breaker;B+4:破色后4 d;B+7:破色后7 d。

    Figure  1.  Photos of tomatoes at developmental stages

    Note: IMG:immature green; MG:Mature green; B:Breaker; B + 4:4 days after Breaker; B + 7:7 days after Breaker.

    图  2  SIP1亚家族蛋白结构

    注:完全一致的氨基酸序列采用黑色底;相似的采用灰色底。高度保守区的位置及可能结构位于序列上部;双元或单元核定位信号(NLS)采用红色方框。螺旋(Helix),中心区(Central domain)

    Figure  2.  The structure of SIP1 proteins

    Note: Identical amino acid sequences are shaded in black, and similar ones in gray. Locations of highly conserved subdomains and possible structure are indicated on top of sequences, and degenerate bipartite or monopartite nuclear localization signal (NLS) by red box; helix; central domain.

    图  3  生物进化分析SIP1亚家族蛋白质

    注:番茄(Solanum lycopersicom, Sl),油菜(Brassica napus, Bn),拟南芥(Arabidopsis thaliana, At)SlSIP1L1(Solyc01g088820);SlSIP1L2(Solyc01g096470);SlSIP1L3(Solyc02g076810);SlSIP1L4(Solyc03g122030);SlSIP1L5(Solyc05g018350);SlSIP1L6(Solyc06g051120);SlSIP1L7(Solyc06g083430);SlSIP1L8(Solyc07g055100);SlSIP1L9(Solyc08g007170);SlSIP1L10(Solyc09g008850);SlSIP1L11(Solyc12g010890);SlSIP1L12*(Solyc12g043090);ASIL1(At1g54060);ASIL2(At3g14180);BnSIP1-1(CDX73485)

    Figure  3.  Phylogenetic analysis of SIP1 proteins

    Note: Si: Solanum lycopersicom; Bn: Brassica napus; At: Arabidopsis thaliana. SlSIP1L1 (Solyc01g088820); SlSIP1L2 (Solyc01g096470); SlSIP1L3 (Solyc02g076810); SlSIP1L4 (Solyc03g122030); SlSIP1L5 (Solyc05g018350); SlSIP1L6 (Solyc06g051120); SlSIP1L7 (Solyc06g083430); SlSIP1L8 (Solyc07g055100); SlSIP1L9 (Solyc08g007170); SlSIP1L10 (Solyc09g008850); SlSIP1L11 (Solyc12g010890); SlSIP1L12* (Solyc12g043090); ASIL1 (At1g54060); ASIL2 (At3g14180); BnSIP1-1 (CDX73485).

    图  4  AC++不同组织中SlSIP1L12的表达模式

    注:(1)RT:根;ST:茎;YL:幼叶;ML:成熟叶;SL:老叶;FL:花;IMG:未成熟果实;MG:成熟果实;B:破色期;B+4:破色后4天;B+7:破色后7天。(2)误差代表了样本数为3时的标准误差,采用t分布检测,字母代表P<0.05。

    Figure  4.  Expressions of SlSIP1L12 in different tissues of AC++

    Note:RT: Roots; ST: Stems; YL: Young Leaves; ML: Mature Leaves; SL: Senescent Leaves; FL: Flower; IMG: Immature Green fruits; MG: Mature Green fruits; B: Break fruits; B+4: 4 d after Break fruits; B+7: 7 d after Break fruits. Error bars represent standard error of mean (n = 3). Different letters indicate significant differences between control and transgenic plants at P < 0.05 by t test.

    图  5  不同处理下SlSIP1L12基因的表达模式分析

    注:A:SlSIP1L12对外源激素处理的响应,Wate: 喷水; IAA: 吲哚乙酸; GA3: 赤霉素; MeJA: 茉莉酸甲酯; ABA: 脱落酸; ACC:1-氨基环丙烷羧酸;B:SlSIP1L12对非生物胁迫的响应,Water: 喷水; Dehydration: 脱水; Wounding: 伤诱导;误差代表了样本数为3时的标准误差,采用t分布检测,(*)代表P<0.05。

    Figure  5.  Expressions of SlSIP1L12 under treatments by different stimuli

    Note: A: response of SlSIP1L12 to hormone stimuli; B: response of SlSIP1L12 to abiotic stress. Error bars represent standard error of mean (n = 3); * at P < 0.05 by t test.

    图  6  转基因不同株系中SlSIP1L12的表达水平

    Figure  6.  Expressions of SlSIP1L12 in RNAi-SlSIP1L12 lines

    图  7  转基因植株和AC++种子的发芽试验

    注:种子发芽势的比对(A);种子萌发7 d时的比对(B);种子萌发7 d时胚根长度统计分析(C)。误差代表了样本数为3时的标准误差,采用t分布检测,**代表P<0.01,*代表P<0.05。

    Figure  7.  Seed germination of transgenic and control plants

    Note: Statistical analyses on germination rate (A), 7d after germination (B), and radicle length on 7th day (C). Error bars represent standard error of mean (n = 3). Significant difference between control and transgenic plants by t test at P< 0.01 (**), and at P < 0.05 (*).

    图  8  沉默株系内下游基因与相关激素的检测

    注:误差代表了样本数为3时的标准误差,采用t分布检测,**代表 P<0.01,*代表P<0.05。

    Figure  8.  Expressions of downstream genes in transgenic and control plants

    Note: Error bars represent standard error of mean (n = 3). Significant difference between control and transgenic plants by t test at P<0.01 (**), and at P<0.05 (*).

    表  1  引物设计

    Table  1.   Primers applied

    引物名称
    Primer names
    序列(5′ → 3′)
    Sequences(5′ → 3′)
    引物用途
    Primer usage
    cSlSIP1L12-F TTGGTTGGTTTCTTGTGCTTC 基因全长片段扩增 Cloned segment of SlSIP1L12
    cSlSIP1L12-R CTCCATAATGTTATTATTGACTGTTGA
    SlSIP1L12-F CTTCCTGTTCACGACCCTTC 沉默片段扩增 RNAi sequence
    SlSIP1L12-R CTCTCAATTTTGGACCCCC
    SlSIP1L12-EcoRI-XbaI-F CGGAATTCTCTAGACTTCCTGTTCACGACCCTTC 构建沉默载体 Construction of RNAi vector
    SlSIP1L12-KpnI-HindIII-R GGGGTACCAAGCTTCTCTCAATTTTGGACCCCC
    qSlCAC-F CCTCCGTTGTGATGTAACTGG 基因器官中表达内参 Reference gene in tissues
    qSlCAC-R ATTGGTGGAAAGTAACATCATCG
    qSlEF1α-F TACTGGTGGTTTTGAAGCTG 处理后基因表达内参 Reference gene for treatments
    qSlEF1α-R AACTTCCTTCACGATTTCATCATA
    qSlSIP1L12-F GCATATTTTCTTGAATTAGATAAAAGGG 基因表达定量引物 Primers for RT-PCR
    qSlSIP1L12-R TAGCAACTAGATGAACAAGTTTCTCCAT
    下载: 导出CSV

    表  2  氨基酸序列一致性分析

    Table  2.   The similarity of SIP1 proteins

    蛋白 ProteinsSlSIP1L12/%蛋白 ProteinsSlSIP1L12/%蛋白 ProteinsSlSIP1L12/%
    SlSIP1L1 21 SlSIP1L6 31.8 SlSIP1L11 25.4
    SlSIP1L2 20.1 SlSIP1L7 17.8 ASIL1 34.9
    SlSIP1L3 30.7 SlSIP1L8 24.1 NtSIP1 24.4
    SlSIP1L4 37.1 SlSIP1L9 18.9
    SlSIP1L5 47.2 SlSIP1L10 17.3
    下载: 导出CSV
  • [1] KITAKURA S, FUJITA T, UENO Y, et al. The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco [J]. The Plant Cell, 2002, 14(2): 451−463. doi: 10.1105/tpc.010360
    [2] GAO M J, LYDIATE D J, LI X, et al. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings [J]. The Plant Cell, 2009, 21(1): 54−71. doi: 10.1105/tpc.108.061309
    [3] WANG Z Y, ZHAO K L, PAN Y X, et al. Genomic, expressional, protein-protein interactional analysis of Trihelix transcription factor genes in Setaria Italia and inference of their evolutionary trajectory [J]. BMC Genomics, 2018, 19(1): 1−12. doi: 10.1186/s12864-017-4368-0
    [4] MA Z T, LIU M Y, SUN W J, et al. Genome-wide identification and expression analysis of the trihelix transcription factor family in Tartary buckwheat (Fagopyrum tataricum) [J]. BMC Plant Biology, 2019, 19(1): 344. doi: 10.1186/s12870-019-1957-x
    [5] WANG W L, WU P, LIU T K, et al. Genome-wide analysis and expression divergence of the trihelix family in Brassica rapa: Insight into the evolutionary patterns in plants [J]. Scientific Reports, 2017, 7: 6463. doi: 10.1038/s41598-017-06935-0
    [6] YU C Y, CAI X F, YE Z B, et al. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato [J]. Biochemical and Biophysical Research Communications, 2015, 468(4): 653−659. doi: 10.1016/j.bbrc.2015.11.010
    [7] FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. The Plant Journal, 2004, 39(6): 863−876. doi: 10.1111/j.1365-313X.2004.02171.x
    [8] PAN Y, SEYMOUR G B, LU C G, et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Reports, 2012, 31(2): 349−360. doi: 10.1007/s00299-011-1170-3
    [9] ZHU M K, CHEN G P, ZHANG J L, et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum) [J]. Plant Cell Reports, 2014, 33(11): 1851−1863. doi: 10.1007/s00299-014-1662-z
    [10] NICOT N, HAUSMAN J F, HOFFMANN L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress [J]. Journal of Experimental Botany, 2005, 56(421): 2907−2914. doi: 10.1093/jxb/eri285
    [11] 杨红丽, 胡靖锋, 徐学忠, 等. 提高休眠期春菜种子发芽率的研究 [J]. 福建农业学报, 2015, 30(6):582−585. doi: 10.3969/j.issn.1008-0384.2015.06.011

    YANG H L, HU J F, XU X Z, et al. Study on improving the germination rate of dormant Brassica juncea seeds [J]. Fujian Journal of Agricultural Sciences, 2015, 30(6): 582−585.(in Chinese) doi: 10.3969/j.issn.1008-0384.2015.06.011
    [12] 崔维佩, 唐桂英, 徐平丽, 等. 花生种子萌发过程中内源激素含量的变化 [J]. 中国油料作物学报, 2020, 42(5):869−877.

    CUI W P, TANG G Y, XU P L, et al. Content changes of endogenous hormones in peanut seeds during germination [J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 869−877.(in Chinese)
    [13] UPADHYAY R K, GUPTA A, SONI D, et al. Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner [J]. Journal of Plant Physiology, 2017, 214: 97−107. doi: 10.1016/j.jplph.2017.04.004
    [14] KAPLAN-LEVY R N, BREWER P B, QUON T, et al. The trihelix family of transcription factors - light, stress and development [J]. Trends in Plant Science, 2012, 17(3): 163−171. doi: 10.1016/j.tplants.2011.12.002
    [15] SUN Y F, LIANG B, WANG J, et al. SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato [J]. Plant & Cell Physiology, 2018, 59(10): 1956−1965.
    [16] URANO K, MARUYAMA K, OGATA Y, et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics [J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57(6): 1065−1078. doi: 10.1111/j.1365-313X.2008.03748.x
    [17] WANG Y Y, MOPPER S, HASENSTEIN K H. Effects of salinity on endogenous aba, iaa, ja, and sa in Iris hexagona [J]. Journal of Chemical Ecology, 2001, 27(2): 327−342. doi: 10.1023/A:1005632506230
    [18] WANG Y P, LI L, YE T T, et al. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis [J]. Journal of Experimental Botany, 2013, 64(2): 675−684. doi: 10.1093/jxb/ers361
    [19] SUO H C, MA Q B, YE K X, et al. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) merr. [J]. PLoS One, 2012, 7(9): e45568. doi: 10.1371/journal.pone.0045568
    [20] 牛雨晴, 许惠滨, 张雨潇, 等. 植物种子休眠分子机制研究进展 [J]. 福建农业学报, 2017, 32(10):1156−1164.

    NIU Y Q, XU H B, ZHANG Y X, et al. Studies on molecular mechanism of plant seed dormancy [J]. Fujian Journal of Agricultural Sciences, 2017, 32(10): 1156−1164.(in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  155
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-11-09
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回