• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响应面法优化亚临界水提取火龙果茎多糖

李国胜 黄秀银 白新鹏

李国胜,黄秀银,白新鹏. 响应面法优化亚临界水提取火龙果茎多糖 [J]. 福建农业学报,2021,36(2):195−201 doi: 10.19303/j.issn.1008-0384.2021.02.009
引用本文: 李国胜,黄秀银,白新鹏. 响应面法优化亚临界水提取火龙果茎多糖 [J]. 福建农业学报,2021,36(2):195−201 doi: 10.19303/j.issn.1008-0384.2021.02.009
LI G S, HUANG X Y, BAI X P. Response Surface Optimization on Subcritical Water Extraction of Polysaccharides from Pitaya Stems [J]. Fujian Journal of Agricultural Sciences,2021,36(2):195−201 doi: 10.19303/j.issn.1008-0384.2021.02.009
Citation: LI G S, HUANG X Y, BAI X P. Response Surface Optimization on Subcritical Water Extraction of Polysaccharides from Pitaya Stems [J]. Fujian Journal of Agricultural Sciences,2021,36(2):195−201 doi: 10.19303/j.issn.1008-0384.2021.02.009

响应面法优化亚临界水提取火龙果茎多糖

doi: 10.19303/j.issn.1008-0384.2021.02.009
基金项目: 海南省重点研发计划项目(ZDYF2019107)
详细信息
    作者简介:

    李国胜(1977−),男,硕士,讲师,研究方向:主要从事热带果蔬加工及天然产物开发(E-mail:hnlgs2020@163.com

  • 中图分类号: S 377

Response Surface Optimization on Subcritical Water Extraction of Polysaccharides from Pitaya Stems

  • 摘要:   目的  为了开发先进的火龙果茎多糖提取方法,采用响应面实验优化亚临界水法提取火龙果茎多糖的工艺,为火龙果茎多糖的亚临界水提取研究提供参考。  方法  在单因素试验基础上,以火龙果茎为原料,采用苯酚一硫酸法进行火龙果茎多糖含量的测定,用超声波预处理辅助,在温度、时间、液料比、pH等4个条件的影响下用响应面法对多糖的提取率进行了分析。  结果  亚临界水提取火龙果茎多糖的最佳条件为:提取温度144 ℃,提取时间19 min,液料比(v/mL∶m/g)为31∶1,pH值5.9;优化条件下火龙果茎多糖的提取率是26.47%。  结论  建立的数学模型可对火龙果茎多糖的提取工艺参数进行分析和预测,采用响应面法优化火龙果茎多糖提取工艺具有可行性。因此,亚临界水法提取火龙果茎多糖具有广阔的应用前景。
  • 图  1  温度对多糖提取率的影响

    Figure  1.  Effect of temperature on polysaccharide extraction

    图  2  时间对多糖提取率的影响

    Figure  2.  Effect of time on polysaccharide extraction

    图  3  液料比对多糖提取率的影响

    Figure  3.  Effect of Liquid-to-material ratio on polysaccharide extraction

    图  4  pH对多糖提取率的影响

    Figure  4.  Effect of pH on polysaccharide extraction

    图  5  各因素交互作用的响应面图

    注:A-时间和温度对多糖提取率影响的曲面图;B-液料比和温度对多糖提取率影响的曲面图;C-pH和温度对多糖提取率影响的曲面图;D-液料比和时间对多糖提取率影响的曲面图;E-时间和pH对多糖提取率影响的曲面图;F-液料比和pH对多糖提取率影响的曲面图。

    Figure  5.  Response plot of interactions between factors

    Note: A: surface plot of time and temperature effects on polysaccharide extraction rate; B: surface plot of liquid-to-material ratio and temperature effects on polysaccharide extraction rate; C: surface plot of pH and temperature effects on polysaccharide extraction rate; D: surface plot of liquid-to-material ratio and time effects on polysaccharide extraction rate; E: surface plot of time and pH effects on polysaccharide extraction rate; F: surface plot of liquid-to- material ratio and pH effects on polysaccharide extraction rate.

    表  1  响应面分析试验因素与水平

    Table  1.   Response surface test factors and levels

    水平
    Level
    A温度
    Temperature/℃
    B时间
    Time/min
    C液料比
    Liquid-to-material ratio/
    (mL·g−1
    D pH
    116025506
    015020405
    −114015304
    下载: 导出CSV

    表  2  响应面试验设计及结果

    Table  2.   Design and results of Box-Behnken experiment

    序号
    No.
    A温度
    Temperature/
    B时间
    Time/
    min
    C液料比
    Liquid-to-material
    ratio/(mL·g−1
    DpHY提取率
    Extraction
    rate/%
    1 0 0 0 0 20.57
    2 −1 1 0 0 21.62
    3 −1 −1 0 0 22.52
    4 −1 0 0 −1 19.42
    5 0 −1 1 0 20.69
    6 1 0 1 0 10.39
    7 0 1 −1 0 16.78
    8 0 0 1 −1 17.98
    9 −1 0 1 0 17.17
    10 0 0 0 0 22.12
    11 0 1 0 1 14.62
    12 1 0 0 −1 12.48
    13 0 −1 0 1 18.48
    14 1 1 0 0 8.74
    15 1 0 −1 0 14.21
    16 0 0 0 0 23.65
    17 −1 0 0 1 24.62
    18 0 0 1 1 20.12
    19 0 0 −1 1 25.04
    20 0 0 0 0 22.62
    21 1 −1 0 0 16.68
    22 0 −1 −1 0 25.67
    23 0 0 −1 −1 23.46
    24 0 1 1 0 12.98
    25 0 0 0 0 20.78
    26 1 0 0 1 14.76
    27 0 −1 0 −1 22.01
    28 0 1 0 −1 17.00
    29 −1 0 −1 0 26.43
    下载: 导出CSV

    表  3  回归模型方差分析结果

    Table  3.   Analysis of variance for fitted regression model

    项目
    Source
    平方和
    Sum of
    squares
    自由度
    df
    均方
    Mean
    square
    FP显著性
    Signi
    ficance
    Model 527.00 14 39.14 9.24 <0.0001 **
    A-温度 247.61 1 247.70 58.46 <0.0001 **
    B-时间 98.10 1 98.1 23.15 0.0003 **
    C-液料比 86.73 1 86.73 20.47 0.0005 **
    D-pH 2.33 1 2.33 0.55 0.4704
    AB 12.39 1 12.39 2.92 0.1093
    AC 7.40 1 7.40 1.75 0.2076
    AD 2.13 1 2.13 0.50 0.4898
    BC 0.35 1 0.35 0.082 0.7786
    BD 0.33 1 0.33 0.078 0.7841
    CD 0.078 1 0.078 0.019 0.8937
    A2 72.30 1 72.30 17.06 0.0010 **
    B2 32.69 1 32.69 7.71 0.0148 *
    C2 2.36 1 2.36 0.56 0.4675
    D2 3.36 1 3.36 0.79 0.3882
    残差 Residual 59.32 14 4.24
    失拟项 Lack of fit 52.68 10 5.27 3.17 0.1385
    误差项 Pure error 6.64 4 1.66
    注:*表示显著影响(P<0.05),**表示极显著影响(P<0.01)。
    Note:* :significant influence(P<0.05),** : extremely significant influence(P<0.01).
    下载: 导出CSV
  • [1] 陈冠林. 红肉火龙果色素提取、纯化、抗氧化及其调血脂作用的研究[D]. 广州: 广东药学院, 2013.

    CHEN G L. Studies on extraction, purification, antioxidant and lipid-regulating effects of pigments from red pitaya[D]. Guangzhou: Guangdong Pharmaceutical University, 2013. (in Chinese).
    [2] 鲁青, 张超凤, 严美婷, 等. 超声波-酶解辅助提取火龙果皮色素的工艺优化 [J]. 食品研究与开发, 2019, 40(17):68−72. doi: 10.12161/j.issn.1005-6521.2019.17.013

    LU Q, ZHANG C F, YAN M T, et al. Optimization of ultrasonic-enzymatic hydrolysis assisted extraction process of pigment from pitaya peel [J]. Food Research and Development, 2019, 40(17): 68−72.(in Chinese) doi: 10.12161/j.issn.1005-6521.2019.17.013
    [3] SOEDJATMIKO H, CHRISNASARI R, HARDJO P H. The effect of fermentation process on physical and chemical characteristics of pitaya (Hylocereus polyrhiuzus [F. A. C. Weber] Britton & Rose) stem flour [J]. IOP Conference Series: Earth and Environmental Science, 2019, 293(1): 1−2.
    [4] 马若影, 杨慧强, 李国胜, 等. 亚临界水提取红心火龙果茎多糖及其抗氧化活性 [J]. 食品工业科技, 2017, 38(10):286−290.

    MA R Y, YANG H Q, LI G S, et al. Study on the extraction and antioxidant activity of polysaccharide from red pulp Hylocereus undatus stem by subcritical water [J]. Science and Technology of Food Industry, 2017, 38(10): 286−290.(in Chinese)
    [5] 徐曼旭, 于国萍, 付饶, 等. 薏米多糖亚临界水萃取工艺的优化 [J]. 食品工业, 2014, 35(1):94−97.

    XU M X, YU G P, FU R, et al. Optimization of extracting technology for polysaccharide of Coix seed by subcritical water [J]. The Food Industry, 2014, 35(1): 94−97.(in Chinese)
    [6] 包怡红, 邓启. 响应面法优化亚临界水萃取黑木耳多糖工艺 [J]. 食品与生物技术学报, 2016, 35(10):1053−1060. doi: 10.3969/j.issn.1673-1689.2016.10.007

    BAO Y H, DENG Q. Optimization of subcritical water extraction of polysaccharides from Auricularia auricular by response surface methodology [J]. Journal of Food Science and Biotechnology, 2016, 35(10): 1053−1060.(in Chinese) doi: 10.3969/j.issn.1673-1689.2016.10.007
    [7] 刘焕燕, 郑光耀, 贺亮, 等. 亚临界水提取无花果多糖的工艺研究 [J]. 食品与发酵科技, 2017, 53(4):20−26.

    LIU H Y, ZHENG G Y, HE L, et al. Study on subcritical water extraction of polysaccharide from Ficus carica linn [J]. Sichuan Food and Fermentation, 2017, 53(4): 20−26.(in Chinese)
    [8] KO MIN-JUNG, NAM HWA-HYUN, CHUNG MYONG-SOO. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). [J]. Scientific Reports, 2020, 10(1): 1627−1633.
    [9] DONG-SHIN  KIM,  SANG-BIN  LIM.  Kinetic  study  of  subcritical water extraction of flavonoids from citrus unshiu peel [J]. Separation and Purification Technology, 2020: 250. DOI: 10.1016/j.seppur.2020.117259.
    [10] 杨诗奇, 张晨, 李超, 等. 亚临界水在生物大分子中的应用进展 [J]. 食品工业, 2020, 41(6):262−264.

    YANG S Q, ZHANG C, LI C, et al. Research progress of subcritical water technology in biomacromolecules [J]. The Food Industry, 2020, 41(6): 262−264.(in Chinese)
    [11] 赵超. 超声强化亚临界水提取枸杞多糖的研究[D]. 广州: 华南理工大学, 2014.

    ZHAO C. Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L[D]. Guangzhou: South China University of Technology, 2014. (in Chinese).
    [12] QIN X. Optimization of the ultrasonic assisted extraction of polysaccharides from dendrobium huoshanense by response surface method [J]. Medicinal Plant, 2012, 3(8): 78−80.
    [13] 史伟国, 白国栋, 宗希明, 等. 星点设计-响应面法优化超声提取脱皮马勃粗多糖工艺 [J]. 中国野生植物资源, 2018, 37(5):4−7. doi: 10.3969/j.issn.1006-9690.2018.05.002

    SHI W G, BAI G D, ZONG X M, et al. Optimization of ultrasound-assisted crude polysaccharide extraction from lasiosphaera fenzlii by central composite design-response surface methodology [J]. Chinese Wild Plant Resources, 2018, 37(5): 4−7.(in Chinese) doi: 10.3969/j.issn.1006-9690.2018.05.002
    [14] PAWLOWSKI T M, POOLE C F. Extraction of thiabendazole and carbendazim from foods using pressurized hot (subcritical) water for extraction:   A feasibility study [J]. Journal of Agricultural and Food Chemistry, 1998, 46(8): 3124−3132. doi: 10.1021/jf980016x
    [15] LI B, YANG Y, GAN Y, et al. On-line coupling of subcritical water extraction with high-performance liquid chromatography via solid-phase trapping [J]. Journal of Chromatography. A, 2000, 873(2): 175−184. doi: 10.1016/S0021-9673(99)01322-9
    [16] 赵健, 王二霞. 亚临界水萃取技术及其在肉品检测中的应用 [J]. 肉类研究, 2008(11):65−68. doi: 10.3969/j.issn.1001-8123.2008.11.017

    ZHAO J, WANG E X. Sub-critical water extraction and the application in meat detection [J]. Meat Research, 2008(11): 65−68.(in Chinese) doi: 10.3969/j.issn.1001-8123.2008.11.017
    [17] SMITH R M. Extractions with superheated water [J]. Journal of Chromatography A, 2002, 975: 31−46. doi: 10.1016/S0021-9673(02)01225-6
    [18] 郭宏垚, 李冬, 雷雄, 等. 花椒多酚提取工艺响应面优化及动力学分析 [J]. 食品科学, 2018, 39(2):247−253. doi: 10.7506/spkx1002-6630-201802039

    GUO H Y, LI D, LEI X, et al. Optimization by response surface methodology and kinetics of extraction of polyphenols from Chinese prickly ash [J]. Food Science, 2018, 39(2): 247−253.(in Chinese) doi: 10.7506/spkx1002-6630-201802039
    [19] 李丹丹. 枸杞多糖的提取及其水解物的研究[D]济南: 齐鲁工业大学, 2014.

    LI D D. Study on extraction and hydrolysates of Lycium barbarum polysaccharides[D] Jinan: Qilu University of Technology, 2014. (in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  69
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-12
  • 修回日期:  2020-12-31
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回