• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转录组测序法研究草珊瑚叶和根的基因差异表达

车苏容 张家源 卢伟 祁克明 魏艺聪

车苏容,张家源,卢伟,等. 转录组测序法研究草珊瑚叶和根的基因差异表达 [J]. 福建农业学报,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005
引用本文: 车苏容,张家源,卢伟,等. 转录组测序法研究草珊瑚叶和根的基因差异表达 [J]. 福建农业学报,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005
CHE S R, ZHANG J Y, LU W, et al. Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome [J]. Fujian Journal of Agricultural Sciences,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005
Citation: CHE S R, ZHANG J Y, LU W, et al. Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome [J]. Fujian Journal of Agricultural Sciences,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005

转录组测序法研究草珊瑚叶和根的基因差异表达

doi: 10.19303/j.issn.1008-0384.2020.06.005
基金项目: 福建省自然科学基金项目(2017J01841)
详细信息
    作者简介:

    车苏容(1974−),男,硕士生导师,副教授,研究方向:中药品种鉴定与质量评价研究(E-mail8612040@qq.com

    通讯作者:

    魏艺聪(1981−),男,博士,副教授,研究方向:中药资源及其药效物质作用机制研究(E-mailyicongwei@126.com

  • 中图分类号: R 932

Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome

  • 摘要:   目的  从基因表达的水平,初步分析草珊瑚叶和根之间次生代谢差异的分子机制,为二者之间临床疗效差异形成的分子机制分析提供信息。  方法  以福建省福州市的草珊瑚作为样品,采用Illumina HiSeqTM高通量测序技术测定草珊瑚叶和根的转录组,然后经过滤和Trinity组装,得到的unigenes再通过blast与Nr、Nt、Pfam、KOG、Swiss-Prot、Kegg和GO进行比对注释,并对叶和根的基因差异表达进行分析,尤其是对KEGG代谢通路富集的差异基因进行分析。  结果  转录组测序结果共获得0.4亿多个clean reads,经Trinity组装后共得到508 271个unigenes,其平均长度为740 bp,最大长度为17.3 kb。基于blast分析,共有148 561个unigenes在七大功能注释数据库中得到成功注释,占总基因数的58.80%。在分析基因表达水平差异时,发现草珊瑚叶和根的共同基因有93 127个,叶和根的差异基因分别为36 327个和52 268个;同时还发现在29 732种不同表达的unigenes中,有12 511个上调基因和17 221个下调基因;代谢相关KEGG具有显著差异的通路有淀粉和蔗糖代谢、苯丙烷类生物合成、乙醛酸和二羧酸代谢、光合生物的固碳作用、吞噬体、谷胱甘肽代谢、光合作用、丙氨酸、天冬氨酸和谷氨酸代谢、倍半萜类和三萜类生物合成、卟啉和叶绿素代谢、氮素代谢、昼夜节律-植物、光合作用-天线蛋白、芪类、二芳基庚酸和姜酚生物合成、不饱和脂肪酸生物合成、柠檬烯和蒎烯降解、类胡萝卜素生物合成、二萜类生物合成、类黄酮生物合成、脂肪酸延伸等。其中与药效密切相关的次生代谢通路苯丙烷类、倍半萜类和三萜类、二萜类、类黄酮类生物合成等途径分别有193个、82个、40个、35个差异表达基因,而上调倍半萜合酶、ent-kaur-16-烯合酶、黄酮醇合酶/黄烷酮3-羟化酶等基因和下调8-羟基香叶醇脱氢酶、vinorine合酶、角鲨烯合酶等关键酶基因差异显著。  结论  草珊瑚叶和根中苯丙烷类、倍半萜类和三萜类、二萜类、类黄酮次生代谢途径的相关基因差异最为显著,其中差异显著的关键酶基因可为分析其叶和根之间次生代谢差异的分子机制提供重要信息。
  • 图  1  拼接转录本与基因序列长度分布

    Figure  1.  Distribution of lengths of spliced transcripts and gene sequences

    图  2  GO分类

    Figure  2.  GO classification

    图  3  KEGG分类

    Figure  3.  KEGG classification

    图  4  利用维恩图分析草珊瑚叶和根的基因差异表达

    Figure  4.  Gene expression by Venn diagram

    表  1  样品RNA测序质量情况

    Table  1.   Quality of RNA sequencing on samples

    样品名 Sample原始序列数据量 Number of Raw Reads过滤后的测序数据量 Number of Clean Reads碱基错误率 Error/%Q20/%Q30/%GC/%
    L148 191 55447 613 4980.0297.6993.1645.60
    L249 296 70248 604 3120.0297.8393.5145.70
    L344 518 04243 929 4180.0297.8593.4845.65
    R148 079 53247 367 1400.0297.7793.3345.22
    R240 631 84840 030 2560.0297.7793.3345.31
    R341 827 60841 131 9440.0297.8693.7145.65
    注:Q20、Q30:指的是Phred值大于20、30的碱基占总体碱基的百分比;GC:指的是碱基G和C的数量和占总的碱基数量的百分比。
    Note: Q20, Q30: the percentage of bases with Phred values greater than 20,30 in total base; GC: the number of bases G and C and the percentage of the total bases number.
    下载: 导出CSV

    表  2  转录本拼装长度分布情况

    Table  2.   Distribution of lengths of transcript assembly

    项目
    Project
    最小长度
    Min length/bp
    平均长度
    Mean length/bp
    中位数长度
    Median length/bp
    最大长度
    Max length/bp
    N50/bpN90/bp总核苷酸
    Total nucleotides/个
    转录本 Transcripts 201 740 418 17 345 1 178 298 376 095 538
    基因 Genes 201 1 138 806 17 345 1 627 537 287 368 837
    注:N50/N90:指的是将拼接转录本从长到短排序后累加转录本的长度,直到不小于总长50%/90%的拼接转录本的长度。
    Note: N50/N90: the length of the spliced transcript that is accumulated after sequencing from long to short until the length of the spliced transcripts is not less than 50/90% of the total length.
    下载: 导出CSV

    表  3  基因注释成功率

    Table  3.   Success rate of gene annotation

    数据库
    Database
    基因数目
    Number of Genes
    占比
    Percentage/%
    在NR数据库有中得到注释
    Annotated in NR
    124 514 49.28
    在NT数据库有中得到注释
    Annotated in NT
    62 462 24.72
    在PFAM数据库有中得到注释
    Annotated in PFAM
    91 970 36.40
    在KOG数据库有中得到注释
    Annotated in KOG
    33 736 13.35
    在SwissPro数据库有中得到注释
    Annotated in SwissProt
    87 941 34.81
    在KO数据库有中得到注释
    Annotated in KO
    43 227 17.11
    在GO数据库有中得到注释
    Annotated in GO
    92 738 36.70
    在所有数据库中得到注释
    Annotated in all Databases
    14 603 5.78
    至少在一个数据库中得到注释
    Annotated in at least one Database
    148 561 58.80
    总基因
    Total Unigenes
    252 630 100.00
    下载: 导出CSV

    表  4  样品差异倍数前10名基因

    Table  4.   Top 10 genes with multi-fold differentiation in specimens

    部位
    Position
    序号
    Number
    基因编号
    Gene id
    读数
    Readcount
    差异倍数
    Log2 fold change
    基因表达说明
    NR Description
    叶 Leaf 1 Cluster-32258.95760 2 209.65 13.54 抗坏血酸过氧化酶 L-ascorbate peroxidase
    2 Cluster-32258.103145 3 524.70 13.25 2-甲基-6-植酰苯醌甲基转移酶
    2-methyl-6-phytylbenzoquinone methyltranferase
    3 Cluster-32258.100314 8 286.64 12.59 5′-腺苷硫酸盐还原酶 5′-adenylylsulfate reductase
    4 Cluster-32258.72246 957.15 12.33 CBL相互作用蛋白激酶 CBL-interacting protein kinase
    5 Cluster-32258.93899 937.73 12.30 叶绿体茎环结合蛋白 chloroplast stem-loop binding protein
    6 Cluster-32258.93433 858.84 12.17 逆转录转座子多蛋白 retrotransposon polyprotein
    7 Cluster-32258.97994 7 598.24 12.14 细胞质同工酶 cytoplasmic isozyme
    8 Cluster-32258.102576 825.51 12.12 淀粉合成酶 stachyose synthase
    9 Cluster-32258.52249 796.50 12.07 钾转运体 potassium transporter
    10 Cluster-32258.89876 707.29 11.89 赤霉素2-β-双加氧酶 gibberellin 2-beta-dioxygenase
    根 Root 1 Cluster-13209.0 29.70 −20.77 葡萄糖6-脱氢酶 glucose 6-dehydrogenase
    2 Cluster-32258.15742 11 132.11 −15.97 枯草芽孢杆菌类蛋白酶 subtilisin-like protease
    3 Cluster-32258.155788 3 560.27 −14.32 阳离子氨基酸转运体 cationic amino acid transporter
    4 Cluster-32258.178815 3 308.58 −14.22 谷胱甘肽S-转移酶 glutathione S-transferase
    5 Cluster-32258.178517 2 443.78 −13.78 膜联蛋白样蛋白 annexin-like protein
    6 Cluster-32258.184073 2 002.57 −13.49 甘油-3-磷酸2-O-酰基转移酶
    glycerol-3-phosphate 2-O-acyltransferase
    7 Cluster-32258.15882 1 941.66 −13.45 细胞色素 Cytochrome
    8 Cluster-32258.15168 1 825.90 −13.36 过氧化物酶超家族蛋白 Peroxidase superfamily protein
    9 Cluster-32258.11664 1 596.82 −13.17 黄瓜素 Cucumisin
    10 Cluster-32258.15447 1 461.26 −13.04 DNA结合蛋白 DNA-binding protein
    下载: 导出CSV

    表  5  草珊瑚叶和根KEGG富集前20的代谢通路

    Table  5.   Metabolic pathways of S. glabra leaves and roots with 20 highest KEGG enrichment

    序号
    Number
    通路名称
    Pathway term
    富集度
    Rich factor
    q
    q value
    基因数目
    Gene number/个
    1 淀粉和蔗糖代谢 Starch and sucrose metabolism 0.28 0.004 213
    2 苯丙素类生物合成 Phenylpropanoid biosynthesis 0.38 0.000 193
    3 乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism 0.33 0.000 161
    4 光合生物的固碳作用 Carbon fixation in photosynthetic organisms 0.34 0.000 153
    5 吞噬体 Phagosome 0.30 0.007 121
    6 谷胱甘肽代谢 Glutathione metabolism 0.29 0.020 119
    7 光合作用 Photosynthesis 0.38 0.000 94
    8 丙氨酸,天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism 0.29 0.034 86
    9 倍半萜类和三萜类生物合成 Sesquiterpenoid and triterpenoid biosynthesis 0.51 0.000 82
    10 卟啉和叶绿素代谢 Porphyrin and chlorophyll metabolism 0.32 0.006 82
    11 氮素代谢 Nitrogen metabolism 0.36 0.004 64
    12 昼夜节律-植物 Circadian rhythm - plant 0.35 0.004 64
    13 光合作用-天线蛋白 Photosynthesis - antenna proteins 0.64 0.000 63
    14 芪类,二芳基庚酸和姜酚生物合成
    Stilbenoid, diarylheptanoid and gingerol biosynthesis
    0.45 0.000 55
    15 不饱和脂肪酸生物合成 Biosynthesis of unsaturated fatty acids 0.32 0.029 55
    16 柠檬烯和蒎烯降解 Limonene and pinene degradation 0.33 0.022 53
    17 类胡萝卜素生物合成 Carotenoid biosynthesis 0.34 0.022 51
    18 二萜类生物合成 Diterpenoid biosynthesis 0.37 0.022 40
    19 类黄酮生物合成 Flavonoid biosynthesis 0.46 0.003 35
    20 脂肪酸延伸 Fatty acid elongation 0.39 0.024 31
    下载: 导出CSV

    表  6  苯丙烷类代谢途径上差异倍数前10名基因

    Table  6.   Top 10 genes with multi-fold differentiation on phenylalanine metabolic pathway

    部位
    Position
    序号
    Number
    基因编号
    Gene id
    叶中的读数
    Leaf readcount
    根中的读数
    Root readcount
    差异倍数
    Log2 fold change
    基因表达说明
    NR Description
    叶 Leaf 1 Cluster-32258.118654 359.81 1.66 7.64 第三类过氧化物酶 class III peroxidase
    2 Cluster-32258.57844 670.29 4.06 7.38 莽草酸氧-羟基肉桂酰基转移酶
    shikimate O-hydroxycinnamoyltransferase
    3 Cluster-32258.75671 22.25 0.00 6.90 溶酶体β葡萄糖苷酶样异构体 X1
    lysosomal beta glucosidase-like isoform X1
    4 Cluster-21604.0 18.74 0.00 6.66 假设的蛋白质 VITISV 011546
    hypothetical protein VITISV 011546
    5 Cluster-22722.0 13.73 0.00 6.21 过氧化物酶P7样 peroxidase P7-like
    6 Cluster-32258.162333 12.17 0.00 6.03 假设的蛋白质 SPRG_01919
    hypothetical protein SPRG 01919
    7 Cluster-32258.93656 10.98 0.00 5.89 过氧化物酶 N1 Peroxidase N1
    8 Cluster-32258.59976 181.06 3.49 5.56 假设的蛋白质 PHAVU 010G162700g
    hypothetical protein PHAVU 010G162700g
    9 Cluster-32258.92806 15.42 0.27 5.41 β-葡萄糖苷酶31样 beta-glucosidase 31-like
    10 Cluster-32258.105029 15.42 0.27 5.41 β-葡萄糖苷酶31样 beta-glucosidase 31-like
    根 Root 1 Cluster-32258.15168 0.00 1 825.90 −13.36 过氧化物酶超家族蛋白 Peroxidase superfamily protein
    2 Cluster-32258.179987 0.61 2 036.76 −11.67 8-羟基香叶醇脱氢酶 8-hydroxygeraniol dehydrogenase
    3 Cluster-32258.183657 0.00 294.75 −10.73 PRX3过氧氧还蛋白 PRX3 peroxiredoxin
    4 Cluster-32258.8233 0.00 275.66 −10.63 过氧化物酶10样 peroxidase 10-like
    5 Cluster-10163.0 0.00 208.35 −10.23 未命名蛋白质产品 unnamed protein product
    6 Cluster-32258.172620 0.98 798.80 −9.72 可能的甘露醇脱氢酶 probable mannitol dehydrogenase
    7 Cluster-32258.23969 9.49 7 453.68 −9.62 可能的甘露醇脱氢酶亚型 X2
    probable mannitol dehydrogenase isoform X2
    8 Cluster-32258.874 0.00 131.92 −9.57 过氧化物酶9样 peroxidase 9-like
    9 Cluster-32258.179634 0.00 111.64 −9.33 过氧化物酶17样 peroxidase 17-like
    10 Cluster-32258.179997 0.32 210.46 −9.28 过氧化物酶7样 peroxidase 7-like
    下载: 导出CSV

    表  7  倍半萜类和三萜类代谢途径上差异倍数前10名基因

    Table  7.   Top 10 genes with multi-fold differentiation on sesquiterpenoid and triterpenoid metabolic pathways

    部位
    Position
    序号
    Number
    基因编号
    Gene id
    叶中的读数
    Leaf readcount
    根中的读数
    Root readcount
    差异倍数
    Log2 fold change
    基因表达说明
    NR Description
    叶 Leaf 1 Cluster-32258.64073 623.05 0.00 11.71 假设的蛋白质 VITISV 030783

    hypothetical protein VITISV 030783
    2 Cluster-32258.111485 2 274.22 2.03 10.17 假设的蛋白质 VITISV 000109

    hypothetical protein VITISV 000109
    3 Cluster-32258.111497 1 356.27 1.76 9.63 未命名蛋白质产品 unnamed protein product
    4 Cluster-32258.97968 192.97 0.33 9.06 卤酸脱卤酶样 haloacid dehalogenase-like
    5 Cluster-32258.108941 189.67 0.33 9.03 倍半萜合酶 sesquiterpene synthase
    6 Cluster-32258.97970 73.89 0.00 8.64 锗烷烯-D合酶 germacrene-D synthase
    7 Cluster-32258.70247 66.66 0.00 8.49 倍半萜合酶 sesquiterpene synthase
    8 Cluster-32258.102983 1 747.64 5.94 8.13 倍半萜合酶 sesquiterpene synthase
    9 Cluster-32258.98251 461.98 1.61 8.12 锗烷烯-D合酶 germacrene-D synthase
    10 Cluster-32258.102455 79.05 0.27 7.77 锗烷烯-D合酶 germacrene-D synthase
    根 Root 1 Cluster-32258.180183 0.00 548.81 −11.62 细胞色素P45071D11样
    cytochrome P450 71D11-like
    2 Cluster-32258.5750 0.00 177.43 −9.99 (-)-锗烷烯D合酶(-)-germacrene D synthase
    3 Cluster-32258.177549 0.00 78.25 −8.82 Valencene合酶样 valencene synthase-like
    4 Cluster-32258.5749 0.00 73.25 −8.72 (-)-锗烷烯D合酶(-)-germacrene D synthase
    5 Cluster-32258.181501 0.00 61.55 −8.47 未命名蛋白质产物 unnamed protein product
    6 Cluster-32258.177548 0.30 67.20 −7.63 Valencene合酶样 valencene synthase-like
    7 Cluster-32258.5751 0.00 17.33 −6.64 δ-镉烯合酶同工酶
    Delta-cadinene synthase isozyme A
    8 Cluster-32258.178134 0.00 16.37 −6.56 Valencene合酶样 valencene synthase-like
    9 Cluster-32258.7220 0.00 14.12 −6.35 (-)-锗烷烯D合酶
    (-)-germacrene D synthase-like
    10 Cluster-7136.0 0.00 12.04 −6.11 鲨烯合酶 squalene synthase
    下载: 导出CSV

    表  8  二萜类代谢途径上差异倍数前10名基因

    Table  8.   Top 10 genes with multi-fold differentiation on diterpenes metabolic pathway

    部位
    Position
    序号
    Number
    基因编号
    Gene id
    叶中的读数
    Leaf readcount
    根中的读数
    Root readcount
    差异倍数
    log2 Fold Change
    基因表达说明
    NR Description
    Leaf 1 Cluster-32258.89876 707.29 0.00 11.89 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    2 Cluster-32258.89871 257.30 0.00 10.44 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    3 Cluster-32258.89879 124.88 0.00 9.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    4 Cluster-32258.89883 86.18 0.00 8.86 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    5 Cluster-32258.98988 1 138.80 3.04 8.50 ent-Kaur-16-烯合成酶 ent-kaur-16-ene synthase
    6 Cluster-32258.89886 62.52 0.00 8.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    7 Cluster-32258.121945 48.27 0.00 8.02 ent-Kaur-16-烯合成酶 ent-kaur-16-ene synthase
    8 Cluster-32258.89870 175.69 1.67 6.70 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    9 Cluster-32258.89878 1 829.05 22.15 6.39 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    10 Cluster-32258.89868 72.51 0.83 6.24 赤霉素2-β-双加氧酶8-样 gibberellin 2-beta-dioxygenase 8-like
    Root 1 Cluster-32258.187014 0.00 377.06 −11.08 en-kaurene氧化酶 ent-kaurene oxidase
    2 Cluster-32258.8593 0.00 322.60 −10.86 戊二烯丙基二磷酸合酶 ent-copalyl diphosphate synthase
    3 Cluster-32258.177819 0.00 186.82 −10.07 ent-贝壳杉酸氧化酶2样 ent-kaurenoic acid oxidase 2-like
    4 Cluster-32258.187433 0.00 176.53 −9.99 ent-贝壳杉酸氧化酶1样 ent-kaurenoic acid oxidase 1-like
    5 Cluster-32258.187015 0.00 172.68 −9.96 en-kaurene氧化酶2样 ent-kaurene oxidase 2-like
    6 Cluster-32258.13043 0.00 126.65 −9.51 假设的蛋白质F775 52245 hypothetical protein F775 52245
    7 Cluster-32258.44968 2.83 1 419.27 −8.97 ent-贝壳杉酸氧化酶1样 ent-kaurenoic acid oxidase 1-like
    8 Cluster-32258.187016 0.00 71.95 −8.69 en-kaurene氧化酶2样 ent-kaurene oxidase 2-like
    9 Cluster-32258.12198 0.00 53.27 −8.26 ent-贝壳杉酸氧化酶2样 ent-kaurenoic acid oxidase 2-like
    10 Cluster-32258.185460 0.00 51.04 −8.19 赤霉素2-β-双加氧酶2-样 gibberellin 2-beta-dioxygenase 2-like
    下载: 导出CSV

    表  9  类黄酮代谢途径上差异倍数前10名基因

    Table  9.   Top 10 genes with multi-fold differentiation on flavonoids metabolic pathway

    部位
    Position
    序号
    Number
    基因编号
    Gene id
    叶中的读数
    Leaf readcount
    根中的读数
    Root readcount
    差异倍数
    Log2 fold change
    基因表达说明
    NR Description
    叶 Leaf 1 Cluster-32258.71949 86.75 0.00 8.87 黄酮醇合成酶/黄酮3-羟化酶
    flavonol synthase/flavanone 3-hydroxylase
    2 Cluster-32258.115774 82.00 0.00 8.79 黄酮醇合成酶/黄酮3-羟化酶
    flavonol synthase/flavanone 3-hydroxylase
    3 Cluster-32258.115780 2 057.23 7.28 8.14 黄酮醇合成酶/黄酮3-羟化酶
    flavonol synthase/flavanone 3-hydroxylase
    4 Cluster-32258.57844 670.29 4.06 7.38 莽草酸氧-羟基肉桂酰基转移酶
    shikimate O-hydroxycinnamoyltransferase
    5 Cluster-32258.90886 7.93 0.00 5.42 查耳酮合酶 chalcone synthase
    6 Cluster-32258.71390 6.28 0.00 5.08 莽草酸氧-羟基肉桂酰基转移酶
    shikimate O-hydroxycinnamoyltransferase
    7 Cluster-32258.90882 1 753.10 56.76 4.94 查耳酮合酶 chalcone synthase
    8 Cluster-32258.142410 4 158.40 206.09 4.33 查尔酮和二苯乙烯合成酶家族蛋白
    Chalcone and stilbene synthase family protein
    9 Cluster-32258.106648 42.80 2.31 4.20 黄烷酮3-羟化酶 flavanone 3-hidroxylase
    10 Cluster-32258.87019 32.35 1.98 4.02 查耳酮合酶 chalcone synthase
    根 Root 1 Cluster-32258.10764 0.00 20.79 −6.90 长春瑞碱合成酶 vinorine synthase
    2 Cluster-1755.1 0.00 7.72 −5.46 细胞色素 P450CYP75B79样
    cytochrome P450 CYP75B79-like
    3 Cluster-32258.10891 7.38 278.86 −5.25 细胞色素 P450CYP73A100样
    cytochrome P450 CYP73A100-like
    4 Cluster-32258.57819 948.36 9 832.09 −3.37 咖啡酰辅酶-CoAO-甲基转移酶
    caffeoyl-CoA O-methyltransferase
    5 Cluster-32258.152146 295.63 2 811.13 −3.24 4-香豆酸3-羟化酶
    5-4-coumarate 3-hydroxylase
    6 Cluster-32258.66450 15.59 78.37 −2.33 咖啡酰辅酶-CoAO-甲基转移酶
    caffeoyl-CoA O-methyltransferase
    7 Cluster-32258.96920 700.62 2 261.42 −1.69 莽草酸氧-羟基肉桂酰基转移酶
    shikimate O-hydroxycinnamoyltransferase
    8 Cluster-32258.72425 372.27 1 064.20 −1.51 咖啡酰辅酶-CoA3-O-甲基转移酶
    caffeoyl-CoA 3-O-methyltransferase
    9 Cluster-32258.124422 229.83 480.10 −1.06 咖啡酰辅酶-CoAO-甲基转移酶
    caffeoyl-CoA O-methyltransferase
    10
    下载: 导出CSV
  • [1] 福建省科学技术委员会《福建植物志》编写组. 福建植物志: 第四卷 [M]. 福州: 福建科学技术出版社, 1990.
    [2] 中国科学院《中国植物志》编辑委员会. 中国植物志 [M]. 北京: 科学出版社, 2005: 287 − 290.
    [3] 国家药典委员会. 中华人民共和国药典: 2015年版 一部 [M]. 北京: 中国医药科技出版社, 2015: 234 − 235.
    [4] 贾敏如, 李星炜. 中国民族药志要 [M]. 北京: 中国医药科技出版社, 2005: 365 − 366.
    [5] 杨荣平, 王宾豪, 励娜, 等. GC-MS法分析肿节风叶中挥发油化学成分 [J]. 中成药, 2008, 30(11):1703−1704. doi: 10.3969/j.issn.1001-1528.2008.11.047

    YANG R P, WANG B H, LI N, et al. Analysis of chemical constituents of essential oil in leaves of Sarcandra glabra by GC-MS [J]. <italic>Chinese Traditional Patent Medicine</italic>, 2008, 30(11): 1703−1704.(in Chinese) doi: 10.3969/j.issn.1001-1528.2008.11.047
    [6] 徐丽丽. 全缘金粟兰及草珊瑚的化学成分研究 [D]. 昆明: 云南中医学院, 2016.

    XU L L. Studies on the chemical constituents of Chloranthus versicolor and Sarcandra glabra [D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2016.(in Chinese)
    [7] 徐艳琴, 刘小丽, 黄小方, 等. 草珊瑚的研究现状与展望 [J]. 中草药, 2011, 42(12):2552−2559.

    XU Y Q, LIU X L, HUANG X F, et al. Status and prospect of studies on <italic>Sarcandra</italic> glaba [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2011, 42(12): 2552−2559.(in Chinese)
    [8] 周斌, 刘可越, 常军, 等. 中药肿节风的化学成分和药理作用研究进展 [J]. 中国现代应用药学, 2009, 26(12):982−986.

    ZHOU B, LIU K Y, CHANG J, et al. Advances on chemical constituents and pharmacological activities of <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Chinese Journal of Modern Applied Pharmacy</italic>, 2009, 26(12): 982−986.(in Chinese)
    [9] 姜伶, 李景辉. 中药肿节风的抗肿瘤作用研究进展 [J]. 中国执业药师, 2014, 11(04):29−31, 35.

    JIANG L, LI J H. Study Progress of Anticancer Effects of Sarcandrae Herba [J]. <italic>China Licensed Pharmacist</italic>, 2014, 11(04): 29−31, 35.(in Chinese)
    [10] 梅全喜, 胡莹. 肿节风的药理作用及临床应用研究进展 [J]. 时珍国医国药, 2011, 22(1):230−232. doi: 10.3969/j.issn.1008-0805.2011.01.114

    MEI Q X, HU Y. Research progress in the pharmacological action and clinical application of <italic>Sarcandra glabra</italic> [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2011, 22(1): 230−232.(in Chinese) doi: 10.3969/j.issn.1008-0805.2011.01.114
    [11] 孙洪计, 魏慧君. RNA-Seq技术在转录组研究中的应用 [J]. 中外医学研究, 2018, 16(20):184−187.

    SUN H J, WEI H J. The application of RNA-seq technology in the study of the transcriptome [J]. <italic>Chinese and Foreign Medical Research</italic>, 2018, 16(20): 184−187.(in Chinese)
    [12] 王媛媛, 杨美青. 药用植物转录组的研究进展 [J]. 安徽农学通报, 2019, 25(8):13−15, 52. doi: 10.3969/j.issn.1007-7731.2019.08.006

    WANG Y Y, YANG M Q. The advances in transcriptome of medicinal plants [J]. <italic>Anhui Agricultural Science Bulletin</italic>, 2019, 25(8): 13−15, 52.(in Chinese) doi: 10.3969/j.issn.1007-7731.2019.08.006
    [13] 唐娟.三个茯苓品种的品质特性及转录组分析 [D].长沙: 湖南农业大学, 2016.

    TANG J. Analysis of characteristics of quality and the transcriptome of three tuckahoe varieties(Poria cocos)[D].Changsha: Hunan Agricultural University, 2016.
    [14] 邓楠, 史胜青, 常二梅, 等. 膜果麻黄种子不同发育时期的转录组测序分析 [J]. 东北林业大学学报, 2015, 43(2):28−32. doi: 10.3969/j.issn.1000-5382.2015.02.007

    DENG N, SHI S Q, CHANG E M, et al. Transcriptomic analysis of germinated seeds of <italic>Ephedra</italic> <italic>przewalskii</italic> [J]. <italic>Journal of Northeast Forestry University</italic>, 2015, 43(2): 28−32.(in Chinese) doi: 10.3969/j.issn.1000-5382.2015.02.007
    [15] 谢冬梅, 俞年军, 黄璐琦, 等. 基于高通量测序的药用植物“凤丹”根皮的转录组分析 [J]. 中国中药杂志, 2017, 42(15):2954−2961.

    XIE D M, YU N J, HUANG L Q, et al. Next generation sequencing and transcriptome analysis of root bark from <italic>Paeonia</italic> <italic>suffruticosa</italic> cv. Feng Dan [J]. <italic>China Journal of Chinese Materia Medica</italic>, 2017, 42(15): 2954−2961.(in Chinese)
    [16] 陈延清, 胡志刚, 刘大会, 等. 药用植物冬凌草高通量转录组测序与分析 [J]. 中国现代中药, 2018, 20(12):1476−1482.

    CHEN Y Q, HU Z G, LIU D H, et al. High-throughput transcriptome sequencing and analysis of <italic>Isodon</italic> <italic>rubescens</italic> (hemsl.) H. <italic>Hara</italic> [J]. <italic>Modern Chinese Medicine</italic>, 2018, 20(12): 1476−1482.(in Chinese)
    [17] 朱孝轩. 长春花转录组与萜类吲哚生物碱代谢途径研究 [D]. 北京: 北京协和医学院, 2015.

    ZHU X X. Research of transcriptome and biosynthetic pathway of TIAs in Catharanthus roseus [D]. Beijing: Peking Union Medical College, 2015.
    [18] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. <italic>Nature Biotechnology</italic>, 2011, 29(7): 644−652. doi: 10.1038/nbt.1883
    [19] GOTZ S, GARCIA-GOMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite [J]. <italic>Nucleic Acids Research</italic>, 2008, 36(10): 3420−3435. doi: 10.1093/nar/gkn176
    [20] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. <italic>Genome Biology</italic>, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [21] YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. <italic>Genome Biology</italic>, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
    [22] MIZRACHI E, HEFER C A, RANIK M, et al. De novo assembled expressed gene catalog of a fast-growing <italic>Eucalyptus</italic> tree produced by Illumina mRNA-Seq [J]. <italic>BMC Genomics</italic>, 2010, 11(1): 681. doi: 10.1186/1471-2164-11-681
    [23] 穆红梅, 杜秀菊, 张秀省, 等. 植物MYB转录因子调控苯丙烷类生物合成研究 [J]. 北方园艺, 2015(24):171−174.

    MU H M, DU X J, ZHANG X S, et al. Study on plants MYB Transcription factors regulate biological synthesis of phenylpropanoid metabolism [J]. <italic>Northern Horticulture</italic>, 2015(24): 171−174.(in Chinese)
    [24] 邵佳. 草珊瑚总黄酮提取纯化及药理作用研究 [D]. 贵阳: 贵州大学, 2008.

    SHAO J. Study on the extraction, purification and pharmacological action of total flavonoids in Sarcandra glabra [D]. Guiyang: Guizhou University, 2008.(in Chinese)
    [25] 郑永标, 许小萍, 邹先文, 等. 草珊瑚药材抗氧化活性化学成分研究 [J]. 福建师范大学学报(自然科学版), 2016, 32(3):98−102.

    ZHENG Y B, XU X P, ZOU X W, et al. Chemical constituents with the antioxidant activity in <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Journal of Fujian Normal University(Natural Science Edition)</italic>, 2016, 32(3): 98−102.(in Chinese)
    [26] 王敦清, 李先春. 草珊瑚根茎叶中总黄酮成分的研究 [J]. 中草药, 1996, 27(6):337−338.

    WANG D Q, LI X C. Studies on total flavonoids from root, stem and leaf of glabrous <italic>Sarcandra</italic> (<italic>Sarcandra</italic> <italic>glabra</italic>) [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 1996, 27(6): 337−338.(in Chinese)
    [27] 陈郑, 哈文波. 高良姜素抗肿瘤作用机制的研究进展 [J]. 医学综述, 2017, 23(9):1752− 1756. doi: 10.3969/j.issn.1006-2084.2017.09.018

    CHEN Z, HA W B. Research progress of antineoplastic mechanism for galangin [J]. <italic>Medical Recapitulate</italic>, 2017, 23(9): 1752− 1756.(in Chinese) doi: 10.3969/j.issn.1006-2084.2017.09.018
    [28] 张旭光, 尹航, 陈峰, 等. 高良姜素药理活性的研究进展 [J]. 中国现代中药, 2016, 18(11):1532−1536.

    ZHANG X G, YIN H, CHEN F, et al. Advances in study of pharmacological activities of galangin [J]. <italic>Modern Chinese Medicine</italic>, 2016, 18(11): 1532−1536.(in Chinese)
    [29] 吴少花, 陈君, 刘亚萌, 等. 杨梅素抗肿瘤活性研究进展 [J]. 吉林医药学院学报, 2015, 36(5):381−383.

    WU S H, CHEN J, LIU Y M, et al. Progress in myricetin antitumor activity [J]. <italic>Journal of Jilin Medical College</italic>, 2015, 36(5): 381−383.(in Chinese)
    [30] 王潞, 周云英. 杨梅素抗感染、抗炎及抗氧化活性研究进展 [J]. 中草药, 2019, 50(3):778−784. doi: 10.7501/j.issn.0253-2670.2019.03.035

    WANG L, ZHOU Y Y. Research progress on anti-infective, anti-inflammatory, and anti-oxidant activities of myricetin [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2019, 50(3): 778−784.(in Chinese) doi: 10.7501/j.issn.0253-2670.2019.03.035
    [31] 林国钡, 谢燕, 李国文. 杨梅素的研究进展 [J]. 国际药学研究杂志, 2012, 39(6):483−487.

    LIN G B, XIE Y, LI G W. Research advances of myricetin [J]. <italic>Journal of International Pharmaceutical Research</italic>, 2012, 39(6): 483−487.(in Chinese)
    [32] 翟广玉, 马海英, 郜蕾. 槲皮素及其衍生物的抗肿瘤活性研究进展 [J]. 化学试剂, 2015, 37(2):97−103.

    ZHAI G Y, MA H Y, GAO L. Progress of antitumor activity of quercetin and derivatives [J]. <italic>Chemical Reagents</italic>, 2015, 37(2): 97−103.(in Chinese)
    [33] 陈振华, 胡晓艳, 赵滕, 等. 槲皮素对心血管系统疾病的影响及其新剂型研究进展 [J]. 时珍国医国药, 2019, 30(2):440−443.

    CHEN Z H, HU X Y, ZHAO T, et al. The research progress of the effect of quercetin on cardiovascular diseases and its new formulations [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2019, 30(2): 440−443.(in Chinese)
    [34] 张超, 李昌平. 槲皮素治疗非酒精性脂肪性肝病的作用机制研究进展 [J]. 中药新药与临床药理, 2015, 26(5):718−721.

    ZHANG C, LI C P. Current progress in mechanism of quercetin for treatment of non-alcoholic fatty liver disease [J]. <italic>Traditional Chinese Drug Research and Clinical Pharmacology</italic>, 2015, 26(5): 718−721.(in Chinese)
    [35] 石玥, 梁晓春. 槲皮素防治神经退行性疾病的机制研究进展 [J]. 中国中西医结合杂志, 2012, 32(10):1432−1435.

    SHI Y, LIANG X C. The mechanism of quercetin in the prevention and treatment of neurodegenerative diseases [J]. <italic>Chinese Journal of Integrated Traditional and Western Medicine</italic>, 2012, 32(10): 1432−1435.(in Chinese)
    [36] 包侠萍. 草珊瑚不同部位及不同采收期有效成分含量的考察 [J]. 海峡药学, 2014, 26(12):42−44. doi: 10.3969/j.issn.1006-3765.2014.12.017

    BAO X P. Study on the content of active components in different parts and harvest time of Caoshanhu [J]. <italic>Strait Pharmaceutical Journal</italic>, 2014, 26(12): 42−44.(in Chinese) doi: 10.3969/j.issn.1006-3765.2014.12.017
    [37] 冯鹤翔, 涂轶. 木质素生物合成的研究 [J]. 青岛大学学报(自然科学版), 2018, 31(1):46−54.

    FENG H X, TU Y. Research on lignin biosynthesis [J]. <italic>Journal of Qingdao University(Natural Science Edition)</italic>, 2018, 31(1): 46−54.(in Chinese)
    [38] 时敏, 王瑶, 周伟, 等. 药用植物萜类化合物的生物合成与代谢调控研究进展 [J]. 中国科学:生命科学, 2018, 48(4):352−364.

    SHI M, WANG Y, ZHOU W, et al. Research progress in terms of the biosynthesis and regulation of terpenoids from medicinal plants [J]. <italic>Scientia Sinica(Vitae)</italic>, 2018, 48(4): 352−364.(in Chinese)
    [39] 苏文炳, 蒋园园, 白昀鹭, 等. 转录因子调控植物萜类化合物生物合成研究进展 [J]. 农业生物技术学报, 2019, 27(5):919−926.

    SU W B, JIANG Y Y, BAI Y L, et al. Advances in transcription factors regulation on plant terpene biosynthesis [J]. <italic>Journal of Agricultural Biotechnology</italic>, 2019, 27(5): 919−926.(in Chinese)
    [40] 金祖汉, 金捷, 毛培江, 等. 角鲨烯对四氯化碳急性肝损伤模型小鼠的抗氧化和护肝作用研究 [J]. 浙江中医药大学学报, 2015, 39(9):666−670.

    JIN Z H, JIN J, MAO P J, et al. Study of the antioxidative and hepatoprotective effects of squalene on acute liver injury mice induced by CCl<sub>4</sub> [J]. <italic>Journal of Zhejiang Chinese Medical University</italic>, 2015, 39(9): 666−670.(in Chinese)
    [41] 缪云萍, 陈爱瑛, 夏志国, 等. 角鲨烯对小鼠急性酒精性肝损伤的保护作用 [J]. 食品工业科技, 2015, 36(16):364−365, 377.

    MIAO Y P, CHEN A Y, XIA Z G, et al. Protective effects of squalene on acute alcohol-induced liver injury in mice [J]. <italic>Science and Technology of Food Industry</italic>, 2015, 36(16): 364−365, 377.(in Chinese)
    [42] KATSELOU M G, MATRALIS A N, KOUROUNAKIS A P. Developing potential agents against atherosclerosis: Design, synthesis and pharmacological evaluation of novel dual inhibitors of oxidative stress and Squalene Synthase activity [J]. <italic>European Journal of Medicinal Chemistry</italic>, 2017, 138: 748−760. doi: 10.1016/j.ejmech.2017.06.042
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  1237
  • HTML全文浏览量:  260
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-09
  • 修回日期:  2020-06-19
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回