• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外源槲皮素对干旱胁迫下板栗苗抗氧化的影响

曾扬鹃 于克妍 靳常敏 于立洋 张京政 曹飞

曾扬鹃,于克妍,靳常敏,等. 外源槲皮素对干旱胁迫下板栗苗抗氧化的影响 [J]. 福建农业学报,2024,39(X):1−7
引用本文: 曾扬鹃,于克妍,靳常敏,等. 外源槲皮素对干旱胁迫下板栗苗抗氧化的影响 [J]. 福建农业学报,2024,39(X):1−7
ZENG Y J, YU K Y, JIN C M, et al. Effect of exogenous quercetin on antioxidant of chestnut seedlings under drought stress [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−7
Citation: ZENG Y J, YU K Y, JIN C M, et al. Effect of exogenous quercetin on antioxidant of chestnut seedlings under drought stress [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−7

外源槲皮素对干旱胁迫下板栗苗抗氧化的影响

基金项目: 国家重点研发计划项目(2022YFD2200400);教育部工程研究中心项目(PT2022-01)。
详细信息
    作者简介:

    曾扬鹃(2000 —),女,硕士研究生,主要从事板栗栽培与育种研究,E-mail:zengyangjuan0613@163.com

    通讯作者:

    曹飞(1988 —),男,博士,讲师,主要从事果树育种和栽培生理教学与科研等工作,E-mail:caofeiqhd@126.com

  • 中图分类号: S664.2

Effect of exogenous quercetin on antioxidant of chestnut seedlings under drought stress

  • 摘要:   目的  探寻外源槲皮素(Quercetin, Q)对提高板栗苗耐旱性的生理机制和适宜喷施浓度。  方法  以燕宝(YB)板栗苗为试材,通过盆栽控水的方法,以重度干旱胁迫CK1和正常管理CK2为对照,研究在重度干旱胁迫下喷施不同浓度[600 μmol·L−1(QD1)、1200 μmol·L−1(QD2)、1800 μmol·L−1(QD3)和2000 μmol·L−1(QD4)、3000 μmol·L−1(QD5)]槲皮素对板栗幼苗叶绿素含量、抗氧化酶活性、丙二醛(MDA)和黄酮醇含量的影响。  结果  与同处于重度干旱胁迫下未经槲皮素喷施处理的CK1相比,5种不同浓度槲皮素喷施处理均能显著提高板栗叶片叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性和黄酮醇含量,同时显著降低了板栗叶片丙二醛(MDA)含量,但喷施后的板栗苗的状态仍不能恢复到正常管理的CK2。通过主成分分析及隶属函数法,得出QD1、QD2、QD3、QD4、QD5各处理的平均抗旱性度量值分别为0.735、0.641、0.738、1.389、0.828。其中,2000 μmol·L−1(QD4)槲皮素浓度处理效果更显著。  结论  外源施加槲皮素可以通过提高板栗幼苗抗氧化酶活性、叶绿素含量,减缓MDA增加速度,减缓细胞膜质过氧化的速度来减轻干旱对板栗叶片细胞的伤害,从而提高板栗幼苗耐旱性,且以2000 μmol·L−1(QD4)槲皮素浓度处理效果最佳。
  • 表  1  干旱胁迫下喷施槲皮素后板栗叶片叶绿素含量的变化

    Table  1.   Changes of chlorophyll content in chestnut leaves after spraying quercetin under drought stress                 (单位:mg·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 3.53±0.01cd 3.19±0.03e 1.50±0.03f
    CK2 5.12±0.07a 5.13±0.04a 5.30±0.06a
    QD1 3.49±0.02 de 4.71±0.04 d 4.15±0.10 d
    QD2 3.66±0.01b 4.91±0.05c 4.15±0.01 d
    QD3 3.63±0.03b 5.03±0.02b 4.26±0.01c
    QD4 3.44±0.01e 5.05±0.01b 4.75±0.01b
    QD5 3.57±0.01c 4.64±0.01 d 4.05±0.01e
    不同小写字母表示同列数值差异显著(P<0.01),下同
    Different lowercase letters indicate significant differences in numerical values within the same column(P<0.01). The same below.
    下载: 导出CSV

    表  2  干旱胁迫下喷施槲皮素后板栗叶片MDA含量的变化

    Table  2.   Changes of MDA content in chestnut leaves after spraying quercetin under drought stress                (单位:nmol·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 63.12±1.23 d 131.28±2.95a 157.29±7.23a
    CK2 37.50±2.13e 39.90±1.04 d 41.28±0.42e
    QD1 68.71±6.09cd 91.07±1.72b 107.50±0.44b
    QD2 73.70±0.32abc 87.20±2.23bc 102.17±1.26bc
    QD3 76.63±3.74a 86.22±1.26c 97.65±1.79cd
    QD4 74.95±0.53ab 84.45±2.12c 93.22±1.49 d
    QD5 69.75±0.32bc 88.41±0.74bc 101.31±1.37bc
    下载: 导出CSV

    表  3  干旱胁迫下喷施槲皮素后板栗叶片SOD活性的变化

    Table  3.   Changes of SOD activity in chestnut leaves after spraying quercetin under drought stress                  (单位:U·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 1157.97±36.93b 1470.95±111.96 d 990.53±13.67e
    CK2 2034.94±61.22a 2107.45±37.58a 2054.98±42.42a
    QD1 1152.45±55.34b 1689.88±35.16c 1322.79±33.30 d
    QD2 1167.31±42.48b 1743.98±24.17c 1447.38±49.93c
    QD3 1080.96±55.52b 1739.51±16.11c 1431.06±21.96c
    QD4 1108.46±40.92b 1907.68±31.35b 1522.91±33.64b
    QD5 1133.02±21.24b 1753.36±44.91c 1320.27±35.56 d
    下载: 导出CSV

    表  4  干旱胁迫下喷施槲皮素后板栗叶片POD活性的变化

    Table  4.   Changes of POD activity in chestnut leaves after spraying quercetin under drought stress                  (单位:U·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 860.00±81.65b 893.33±57.35e 600.00±43.20f
    CK2 1660.00±101.98a 1646.67±24.94a 1746.67±92.86a
    QD1 846.67±67.99b 1066.67±9.43 de 760.00±28.28ef
    QD2 886.67±33.99b 1113.33±89.94 d 913.33±131.99 de
    QD3 893.33±77.17b 1346.67±108.73bc 1153.33±33.99bc
    QD4 900.00±28.28b 1506.67±133.00ab 1300.0071.18b
    QD5 786.67±33.99b 1206.67±73.64cd 1040.00±81.65cd
    下载: 导出CSV

    表  5  干旱胁迫下喷施槲皮素后板栗叶片CAT活性的变化

    Table  5.   Changes of CAT activity in chestnut leaves after spraying quercetin under drought stress               (单位:nmol·min−1·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 164.98±3.20b 183.06±5.54 d 133.34±20.96 d
    CK2 316.40±17.80a 318.66±29.29a 305.10±5.54a
    QD1 162.72±5.54b 244.08±14.65bc 207.92±22.37bc
    QD2 164.98±20.96b 223.74±5.54c 176.28±19.96c
    QD3 155.94±5.54b 219.22±3.20c 178.54±8.46c
    QD4 158.20±6.39b 262.16±25.57b 212.44±13.93b
    QD5 166.34±2.79b 228.26±8.46bc 196.62±9.59bc
    下载: 导出CSV

    表  6  干旱胁迫下喷施槲皮素后板栗叶片黄酮醇含量的变化

    Table  6.   Changes of Flavonol content in chestnut leaves after spraying quercetin under drought stress                   (单位:mg·g−1)

    处理
    Handle
    时间
    Time
    0 d 5 d 10 d
    CK1 2.00±0.03a 2.74±0.25 d 2.22±0.05b
    CK2 1.07±0.15b 1.09±0.12e 1.10±0.02c
    QD1 1.95±0.20a 2.97±0.18cd 2.55±0.21ab
    QD2 1.96±0.08a 3.24±0.21bc 2.56±0.03ab
    QD3 1.99±0.08a 3.15±0.19bcd 2.36±0.17ab
    QD4 1.86±0.17a 3.48±0.29ab 2.71±0.07a
    QD5 1.79±0.12a 3.86±0.04a 2.60±0.36a
    下载: 导出CSV

    表  7  干旱胁迫下外源喷施槲皮素5 d、10 d的主成分系数、特征值及贡献率

    Table  7.   The principal component coefficient, characteristic value and contribution rate of exogenous spraying quercetin for 5 days and 10 days under drought stress

    时间
    Time
    主成分
    Component
    X1 X2 X3 X4 X5 X6 特征值
    Eigenvalues
    贡献率
    Contribution rate /%
    累积贡献率
    Cumulative contribution rate /%
    5 d 1 0.955 0.954 −0.930 0.761 0.519 0.305 3.629 60.478 60.478
    2 0.002 0.230 0.145 −0.639 0.269 0.855 1.287 21.446 81.923
    10 d 1 0.498 −0.486 0.467 0.449 0.177 0.254 3.642 60.705 60.705
    2 0.112 0.240 −0.220 −0.241 0.687 0.592 1.655 27.582 88.287
    X1-叶绿素; X2-MDA; X3-SOD; X4-POD; X5-CAT; X6-黄酮醇。下表同。
    X1- chlorophyll; X2-MDA; X3-SOD; X4-POD; X5-CAT; X6-flavonol. The same as below.
    下载: 导出CSV

    表  8  各处理的抗旱性度量值及综合排序

    Table  8.   8 The Drought resistance membership function value and comprehensive ranking of each treatment

    处理
    Treatment
    5 d抗旱性
    度量值
    5 days Drought-
    tolerance value
    10 d抗旱性
    度量值
    10 days Drought-
    tolerance value
    平均抗旱性
    度量值
    Drought-
    tolerance
    value
    排序
    Order
    QD1 0.927 0.544 0.735 4
    QD2 0.711 0.570 0.641 5
    QD3 0.855 0.621 0.738 3
    QD4 0.961 1.817 1.389 1
    QD5 0.983 0.672 0.828 2
    下载: 导出CSV
  • [1] RODRÍGUEZ-FLORES M S, ESCUREDO O, SEIJO M C, et al. Phenolic profile of Castanea bee pollen from the northwest of the Iberian peninsula [J]. Separations, 2023, 10(4): 270. doi: 10.3390/separations10040270
    [2] ZHANG S, WANG L T, FU Y J, et al. Bioactive constituents, nutritional benefits and woody food applications of Castanea mollissima: A comprehensive review [J]. Food Chemistry, 2022, 393: 133380. doi: 10.1016/j.foodchem.2022.133380
    [3] 刘晓书, 刘芳, 张俊. 京津冀地区板栗产业布局及前景分析 [J]. 中国果树, 2022, (2):99−102.

    LIU X S, LIU F, ZHANG J. Layout and prospect analysis of chestnut industry in Beijing-Tianjin-Hebei Region [J]. China Fruits, 2022(2): 99−102. (in Chinese)
    [4] WANG Y P, LIU C Y, FANG Z, et al. A review of the stress resistance, molecular breeding, health benefits, potential food products, and ecological value of Castanea mollissima [J]. Plants, 2022, 11(16): 2111. doi: 10.3390/plants11162111
    [5] KUPPUSAMY A, ALAGARSWAMY S, KARUPPUSAMI K M, et al. Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions [J]. Plants, 2023, 12(13): 2535. doi: 10.3390/plants12132535
    [6] LI P C, YANG X Y, WANG H M, et al. Metabolic responses to combined water deficit and salt stress in maize primary roots [J]. Journal of Integrative Agriculture, 2021, 20(1): 109−119. doi: 10.1016/S2095-3119(20)63242-7
    [7] ULUSOY H G, SANLIER N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3290−3303. doi: 10.1080/10408398.2019.1683810
    [8] NISHIMURO H, OHNISHI H, SATO M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan [J]. Nutrients, 2015, 7(4): 2345−2358. doi: 10.3390/nu7042345
    [9] 柳苗苗, 蔡伟建, 张斌斌, 等. 槲皮素对草莓生长发育、光合和生理生化特性影响的综合评价[J]. 江苏农业科学, 2022, 50(21): 165−172.

    LIU M M, CAI W J, ZHANG B B, , et al. Comprehensive evaluation on effects of quercetin on growth, photosynthesis, physiological and biochemical characteristics of strawberry[J]. Jiangsu Agricultural Sciences, 2022, 50(21): 165−172. (in Chinese)
    [10] PARVIN K, HASANUZZAMAN M, BHUYAN M H M B, et al. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems [J]. Plants, 2019, 8(8): 247. doi: 10.3390/plants8080247
    [11] 庄武豹, 姚康有, 杨妙贤, 等. 槲皮素对猕猴桃高温强光伤害的缓解作用 [J]. 园艺学报, 2009, 36(6):787−792. doi: 10.3321/j.issn:0513-353X.2009.06.002

    ZHUANG W B, YAO K Y, YANG M X, et al. Effects of quercetin to alleviate injury of kiwifruit plants under high temperature and intensive sunlight [J]. Acta Horticulturae Sinica, 2009, 36(6): 787−792. (in Chinese) doi: 10.3321/j.issn:0513-353X.2009.06.002
    [12] AGATI G, BIRICOLTI S, GUIDI L, et al. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves [J]. Journal of Plant Physiology, 2011, 168(3): 204−212. doi: 10.1016/j.jplph.2010.07.016
    [13] 李国庆. 黄酮醇在小麦抗旱节水中的功能分析[D]. 济南: 山东大学, 2021.

    LI G Q. Functional analysis of flavonol in drought resistance and water saving of wheat[D]. Jinan: Shandong University, 2021. (in Chinese)
    [14] YANG J L, ZHANG L X, JIANG L, et al. Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress [J]. Plant Physiology and Biochemistry:PPB, 2021, 159: 268−276. doi: 10.1016/j.plaphy.2020.12.025
    [15] 武燕奇, 郭素娟. 10个板栗砧木品种(系)抗旱性综合评价 [J]. 东北农业大学学报, 2016, 47(10):9−16. doi: 10.3969/j.issn.1005-9369.2016.10.002

    WU Y Q, GUO S J. Comprehensive evaluation on drought resistance of 10 Chinese chestnut varieties(strain) [J]. Journal of Northeast Agricultural University, 2016, 47(10): 9−16. (in Chinese) doi: 10.3969/j.issn.1005-9369.2016.10.002
    [16] 邹琦等, 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1999: 36−38.
    [17] 张碧茹, 米俊珍, 赵宝平, 等. 外源γ-氨基丁酸缓解燕麦幼苗盐碱胁迫的生理效应 [J]. 麦类作物学报, 2024, 44(2):222−229.

    ZHANG B R, MI J Z, ZHAO B P, et al. Physiological effects of exogenous gamma-aminobutyric acid on salt-alkali stress in oat seedlings [J]. Journal of Triticeae Crops, 2024, 44(2): 222−229. (in Chinese)
    [18] SAITO K, YONEKURA-SAKAKIBARA K, NAKABAYASHI R, et al. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity [J]. Plant Physiology and Biochemistry:PPB, 2013, 72: 21−34. doi: 10.1016/j.plaphy.2013.02.001
    [19] CROFT H, CHEN J M, WANG R, et al. The global distribution of leaf chlorophyll content [J]. Remote Sensing of Environment, 2020, 236: 111479. doi: 10.1016/j.rse.2019.111479
    [20] MORK-JANSSON A E, EICHACKER L A. A strategy to characterize chlorophyll protein interaction in LIL3 [J]. Plant Methods, 2019, 15: 1. doi: 10.1186/s13007-018-0385-5
    [21] YANG X Y, LU M Q, WANG Y F, et al. Response mechanism of plants to drought stress [J]. Horticulturae, 2021, 7(3): 50. doi: 10.3390/horticulturae7030050
    [22] CRUZ CARVALHO M H. Drought stress and reactive oxygen species: Production, scavenging and signaling [J]. Plant Signaling & Behavior, 2008, 3(3): 156−165.
    [23] HASANUZZAMAN M. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms[M].
    [24] 曹运琳, 邢梦云, 徐昌杰, 等. 植物黄酮醇生物合成及其调控研究进展 [J]. 园艺学报, 2018, 45(1):177−192.

    CAO Y L, XING M Y, XU C J, et al. Biosynthesis of flavonol and its regulation in plants [J]. Acta Horticulturae Sinica, 2018, 45(1): 177−192. (in Chinese)
  • 加载中
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 修回日期:  2024-03-04
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回