• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MS2噬菌体介导展示猪繁殖与呼吸综合征病毒线性表位的嵌合纳米颗粒制备及免疫原性

王国强 李欣欣 苏运芳 曾华辉 马红芳 刘保光 尚立芝 张振强

王国强,李欣欣,苏运芳,等. MS2噬菌体介导展示猪繁殖与呼吸综合征病毒线性表位的嵌合纳米颗粒制备及免疫原性 [J]. 福建农业学报,2020,35(6):618−625 doi: 10.19303/j.issn.1008-0384.2020.06.007
引用本文: 王国强,李欣欣,苏运芳,等. MS2噬菌体介导展示猪繁殖与呼吸综合征病毒线性表位的嵌合纳米颗粒制备及免疫原性 [J]. 福建农业学报,2020,35(6):618−625 doi: 10.19303/j.issn.1008-0384.2020.06.007
WANG G Q, LI X X, SU Y F, et al. MS2 Phage-mediated Preparation and Immunogenicity of Chimeric Nanoparticles with Linear Epitope of Reproductive and Respiratory Syndrome Virus [J]. Fujian Journal of Agricultural Sciences,2020,35(6):618−625 doi: 10.19303/j.issn.1008-0384.2020.06.007
Citation: WANG G Q, LI X X, SU Y F, et al. MS2 Phage-mediated Preparation and Immunogenicity of Chimeric Nanoparticles with Linear Epitope of Reproductive and Respiratory Syndrome Virus [J]. Fujian Journal of Agricultural Sciences,2020,35(6):618−625 doi: 10.19303/j.issn.1008-0384.2020.06.007

MS2噬菌体介导展示猪繁殖与呼吸综合征病毒线性表位的嵌合纳米颗粒制备及免疫原性

doi: 10.19303/j.issn.1008-0384.2020.06.007
基金项目: 河南中医药大学博士科研启动经费(RSBSJJ2018-09)
详细信息
    作者简介:

    王国强(1983−),男,博士,助理研究员,研究方向:病原微生物免疫(E-mail:biowgq@126.com

    通讯作者:

    尚立芝(1966−),女,硕士,教授,研究方向:中药病理与免疫(E-mail:lzshang2014@163.com

    张振强(1971−),男,博士,教授,研究方向:中药药理与免疫(E-mail:zhang_zhenqiang@126.com

  • 中图分类号: Q 78

MS2 Phage-mediated Preparation and Immunogenicity of Chimeric Nanoparticles with Linear Epitope of Reproductive and Respiratory Syndrome Virus

  • 摘要:   目的  以MS2噬菌体外壳蛋白为载体,构建展示猪繁殖与呼吸综合征病毒GP5蛋白上线性表位的嵌合纳米颗粒,并研究其免疫原性,为猪繁殖与呼吸综合征病毒或其他病毒表位展示提供新的方法和思路。  方法  利用重叠延伸PCR将GP5上优势线性表位基因序列插入到MS2噬菌体外壳蛋白基因上,构建重组载体,通过原核表达系统表达嵌合蛋白,目的蛋白经过硫酸铵沉淀和凝胶过滤层析纯化,用动态光散射和电镜对嵌合蛋白进行物理表征,通过蛋白印迹和动物免疫试验研究表位嵌合颗粒的免疫原性。  结果  成功将线性表位基因插入MS2噬菌体外壳蛋白基因,嵌合蛋白在原核表达系统中以水溶性表达,目的蛋白经过纯化,纯度达85%以上。嵌合蛋白在体外自组装形成了均一的、直径为25~31 nm的嵌合表位纳米颗粒,该嵌合颗粒免疫动物后,产生可以和灭活病毒反应的高水平抗体,具有良好的免疫原性。  结论  MS2噬菌体外壳蛋白可以耐受9个外源多肽(猪繁殖与呼吸综合征病毒GP5上线性表位)的插入,在体外自组装形成嵌合病毒样颗粒。该颗粒将外源多肽高密度展示在表面,免疫动物可产生针对该表位的抗体。该技术可为猪繁殖与呼吸综合征病毒其他表位或更长串联表位的展示奠定基础。
  • 图  1  上下游片段和全长片段CP-B1的扩增

    注:M:DNA分子量标准;1:上游片段;2:下游片段;3:SOE-PCR扩增全长片段。

    Figure  1.  Gel electrophoresis on amplication products of PCR and SOE-PCR

    Note: M: DNA Marker DL2000; Lane 1: upstream fragment; Lane 2: downstream fragment; Lane 3: SOE-PCR product of whole fragment.

    图  2  重组质粒pET28a(+)/CP-B1双酶切鉴定

    注:M:DNA分子量标准;1~2:两个质粒分别用Nhe Ⅰ 和 Bam HⅠ双酶切。

    Figure  2.  Identification of recombinant plasmids by restriction enzyme digestion

    Note: M: DNA Marker DL2000; Lane 1–2: two recombinant plasmids pET28a(+)/CP-B1 was digested using restriction enzymes Nhe Ⅰ and Bam HⅠ, respectively.

    图  3  嵌合重组蛋白表达、纯化SDS-PAGE图和分子筛检测

    注:a:M:蛋白分子量标准;1:超声破碎后上清;2:硫酸铵沉淀后重悬上清;3:凝胶过滤层析第一个流出峰浓缩后;b:第一个峰为目的蛋白峰。

    Figure  3.  Chimeric recombinant protein expression, SDS-PAGE purification (a), and gel filtration chromatography (b)

    Note: a: M: Protein Marker; Lane 1: supernatant after sonication; Lane 2: resuspension after precipitation of ammonium sulfate; Lane 3:the first peak of gel filtration chromatography; b: the first peak is the target protein.

    图  4  嵌合表位纳米颗粒的物理表征

    注:a:电镜观察;b:DLS分析检测。

    Figure  4.  Physical characterization of chimeric epitope nanoparticles

    Note: a: Electron microscopic observation. b: DLS detection.

    图  5  嵌合表位纳米颗粒免疫原性检测结果

    注:a:蛋白印迹;M:蛋白分子量标准;1:超声破碎后上清;2:硫酸铵沉淀后重悬上清;3:凝胶过滤层析第一个流出峰浓缩后;b:豚鼠抗血清抗体水平。

    Figure  5.  Immunogenicity of chimeric epitope nanoparticles on guinea pigs

    Note: a: M: Protein Marker; Lane 1: supernatant after sonication; Lane 2: resuspension after precipitation of ammonium sulfate; Lane 3: the first peak of gel filtration chromatography; b: anti-serum antibody levels in guinea pigs.

    表  1  PCR和OE-PCR中用到的引物序列

    Table  1.   Primer sequences used in PCR and OE-PCR

    引物名称 Primer name引物序列 Primer sequence(5′-3′)
    CP-FCTAGCTAGCCTTCTAACTTTACTC
    CP-RCGCGGATCCTGTTGTCTTCGACATGGGTA
    IN-FCGTCGACAATGGCGGATCCCATCTACAGCTGATTTACA
    IN-RACAGTCACGTCGCCAGTCAAGTTGTAAATCAGCT
    注:CP-F引物中序列斜体加粗部分为Nhe Ⅰ 酶切位点,CP-R引物中序列斜体加粗部分为Bam HⅠ 酶切位点。引物IN-F和IN-R中,加粗部分为MS2载体插入位点两侧序列,斜体部分为插入的线性表位B1(37~45)基因序列,斜体加下划线部分为12个碱基的互补片段。
    Note: The bold part in italics of CP-F primers is the Nhe Ⅰ digestion site, The bold part in italics of CP-R primer is the Bam HⅠ digestion site. In the primers IN-F and IN-R, the bolded part is the sequence on both sides of the MS2 vector insertion site, and the italicized part is the inserted neutralizing epitope B1(37–45)gene sequence. The 12 italicized and underlined parts are complementary fragments.
    下载: 导出CSV
  • [1] WANG J, LIU J Y, SHAO K Y, et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through down-regulation of NDRG1 expression [J]. <italic>Journal of Virology</italic>, 2019, 93(17): e00526. doi: 10.1128/jvi.00526-19
    [2] 冷雪, 李真光, 王凤雪, 等. 高致病性猪繁殖与呼吸综合征病毒ORF5基因的变异分析 [J]. 吉林农业大学学报, 2012, 34(4):443−448, 453.

    LENG X, LI Z G, WANG F X, et al. Variation analysis of the ORF5 gene of highly pathogenic porcine reproductive and respiratory syndrome virus(HP-PRRSV) [J]. <italic>Journal of Jilin Agricultural University</italic>, 2012, 34(4): 443−448, 453.(in Chinese)
    [3] ZHANG X, LI Y, XIAO S Z, et al. High-frequency mutation and recombination are responsible for the emergence of novel porcine reproductive and respiratory syndrome virus in northwest China [J]. <italic>Archives of Virology</italic>, 2019, 164(11): 2725−2733. doi: 10.1007/s00705-019-04373-z
    [4] 冯延, 郭嘉, 许瑞勤, 等. 针对不同形式猪繁殖与呼吸综合征病毒GP5重组蛋白的抗体中和活性比较 [J]. 畜牧兽医学报, 2018, 49(6):1222−1230. doi: 10.11843/j.issn.0366-6964.2018.06.014

    FENG Y, GUO J, XU R Q, et al. Comparison of neutralizing antibodies induced by PRRSV GP5 recombinant proteins in different forms of truncation [J]. <italic>Acta Veterinaria et Zootechnica Sinica</italic>, 2018, 49(6): 1222−1230.(in Chinese) doi: 10.11843/j.issn.0366-6964.2018.06.014
    [5] 仇华吉, 周彦君, 童光志. 猪生殖-呼吸综合征病毒蛋白的结构与功能 [J]. 动物医学进展, 2000, 21(2):23−26.

    QIU H J, ZHOU Y J, TONG G Z. Structural and functional aspects of viral proteins of porcine reproductive and respiratory syndrome virus [J]. <italic>Progress in Veterinary Medicine</italic>, 2000, 21(2): 23−26.(in Chinese)
    [6] DENAC H, MOSER C, TRATSCHIN J D, et al. An indirect ELISA for the detection of antibodies against porcine reproductive and respiratory syndrome virus using recombinant nucleocapsid protein as antigen [J]. <italic>Journal of Virological Methods</italic>, 1997, 65(2): 169−181. doi: 10.1016/S0166-0934(97)02186-1
    [7] PYO H, SEO J, SUH G, et al. Serodiagnosis of porcine reproductive and respiratory syndrome virus infection with the use of glycoprotein 5 antigens [J]. <italic>Canadian Journal of Veterinary Research</italic>, 2010, 74(3): 223−227.
    [8] POPESCU L N, TRIBLE B R, CHEN N H, et al. GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) as a target for homologous and broadly neutralizing antibodies [J]. <italic>Veterinary Microbiology</italic>, 2017, 209: 90−96. doi: 10.1016/j.vetmic.2017.04.016
    [9] OSTROWSKI M, GALEOTA J A, JAR A M, et al. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain [J]. <italic>Journal of Virology</italic>, 2002, 76(9): 4241−4250. doi: 10.1128/JVI.76.9.4241-4250.2002
    [10] 陈如敬, 吴学敏, 车勇良, 等. PRRSV GP5抗原表位的串联表达及生物学活性鉴定 [J]. 中国兽医学报, 2014, 34(6):904−907.

    CHEN R J, WU X M, CHE Y L, et al. Expression and characterization of the GP5 encoding epitomes for porcine reproductive and respiratory syndrome virus [J]. <italic>Chinese Journal of Veterinary Science</italic>, 2014, 34(6): 904−907.(in Chinese)
    [11] PEABODY D S, MANIFOLD-WHEELER B, MEDFORD A, et al. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2 [J]. <italic>Journal of Molecular Biology</italic>, 2008, 380(1): 252−263. doi: 10.1016/j.jmb.2008.04.049
    [12] ZHAI L K, PEABODY J, PANG Y Y S, et al. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9 [J]. <italic>Antiviral Research</italic>, 2017, 147: 116−123. doi: 10.1016/j.antiviral.2017.09.012
    [13] ZHAI L K, YADAV R, KUNDA N K, et al. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer [J]. <italic>Antiviral Research</italic>, 2019, 166: 56−65. doi: 10.1016/j.antiviral.2019.03.012
    [14] DONG Y M, CAI J C, CHEN H T, et al. Protection of a novel epitope-RNA VLP double-effective VLP vaccine for foot-and-mouth disease [J]. <italic>Antiviral Research</italic>, 2016, 134: 108−116. doi: 10.1016/j.antiviral.2016.08.020
    [15] WANG G Q, LIU Y C, FENG H, et al. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus [J]. <italic>PeerJ</italic>, 2018, 6: e4823. doi: 10.7717/peerj.4823
    [16] SONG H Q, XIONG D, WANG J, et al. A porcine reproductive and respiratory syndrome virus vaccine candidate based on PRRSV glycoprotein 5 and the Toll-like receptor 5 agonist <italic>Salmonella typhimurium</italic> flagellin [J]. <italic>Journal of Molecular Microbiology and Biotechnology</italic>, 2015, 25(1): 56−59. doi: 10.1159/000375496
    [17] QIAO S L, JIANG Z Z, TIAN X H, et al. Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection [J]. <italic>PLoS One</italic>, 2011, 6(12): e28721. doi: 10.1371/journal.pone.0028721
    [18] SHI P D, ZHANG L L, WANG J S, et al. Porcine FcεRI mediates porcine reproductive and respiratory syndrome virus multiplication and regulates the inflammatory reaction [J]. <italic>Virologica Sinica</italic>, 2018, 33(3): 249−260. doi: 10.1007/s12250-018-0032-3
    [19] SU J, ZHOU L, HE B C, et al. Nsp2 and GP5-M of porcine reproductive and respiratory syndrome virus contribute to targets for neutralizing antibodies [J]. <italic>Virologica Sinica</italic>, 2019, 34(6): 631−640. doi: 10.1007/s12250-019-00149-6
    [20] 曹佳媛, 田明尧, 辛舒, 等. 以乙型肝炎病毒核心蛋白为载体的PRRSV病毒样颗粒疫苗的构建 [J]. 中国兽医科学, 2015, 45(10):1000−1004.

    CAO J Y, TIAN M Y, XIN S, et al. Construction of American serotype porcine reproductive and respiratory syndrome virus virus-like particles vaccine using hepatitis B virus core protein as a vector [J]. <italic>Chinese Veterinary Science</italic>, 2015, 45(10): 1000−1004.(in Chinese)
    [21] 张素姣, 王东亮, 李萌, 等. Loop EF区嵌合猪细小病毒B细胞表位对猪圆环病毒2型病毒样颗粒组装的影响 [J]. 中国兽医科学, 2019, 49(2):176−182.

    ZHANG S J, WANG D L, LI M, et al. Effect of chimeric porcine parvovirus B cell epitope in Loop EF region on assembly of porcine <italic>Circovirus</italic> type 2 virus-like particles [J]. <italic>Chinese Veterinary Science</italic>, 2019, 49(2): 176−182.(in Chinese)
    [22] 蒋春英, 魏建超, 史子学, 等. 展示日本乙型脑炎病毒B细胞表位和T细胞表位的猪细小病毒病毒样颗粒的制备 [J]. 中国兽医科学, 2013, 43(4):358−363.

    JIANG C Y, WEI J C, SHI Z X, et al. Construction of porcine parvovirus-like particles harboring B cell and T cell epitopes of Japanese encephalitis virus [J]. <italic>Chinese Veterinary Science</italic>, 2013, 43(4): 358−363.(in Chinese)
    [23] 许博, SYBALOVA L M. 基于在乙肝核心抗原免疫显性区域展示流感M2e肽的病毒样颗粒流感候选疫苗的研究: 含4拷贝M2e的广谱保护效力 [J]. 微生物学免疫学进展, 2016, 44(6):47.

    XU B, L M S. Study on a virus-like particle influenza vaccine candidate based on the display of influenza M2e peptides in the immunodominant region of hepatitis B core antigen: broad-spectrum protective efficacy with 4 copies of M2e [J]. <italic>Progress in Microbiology and Immunology</italic>, 2016, 44(6): 47.(in Chinese)
    [24] 董艳美, 张国广, 汪卫, 等. MS2介导的口蹄疫类病毒颗粒疫苗的研究 [J]. 厦门大学学报(自然科学版), 2013, 52(2):237−243.

    DONG Y M, ZHANG G G, WANG W, et al. Study on MS2 mediated virus-like particles vaccine against foot-and-month disease [J]. <italic>Journal of Xiamen University (Natural Science Edition)</italic>, 2013, 52(2): 237−243.(in Chinese)
    [25] 王艳梅, 顾敬敏, 雷连成, 等. 猪繁殖与呼吸障碍综合征病毒GP5蛋白羧基端的噬菌体展示及其诱导仔猪产生中和抗体水平 [J]. 中国兽医学报, 2019, 39(5):830−834, 841.

    WANG Y M, GU J M, LEI L C, et al. Construction and induced neutralizing antibody level by recombinant phage expression carboxy terminal of GP5protein from porcine reproductive and respiratory syndrome virus [J]. <italic>Chinese Journal of Veterinary Science</italic>, 2019, 39(5): 830−834, 841.(in Chinese)
    [26] 孙士鹏, 刘贵建. MS2噬菌体衣壳蛋白与包装位点结合特异性及其生物学应用进展 [J]. 生物技术通讯, 2014, 25(2):259−262. doi: 10.3969/j.issn.1009-0002.2014.02.025

    SUN S P, LIU G J. Biological application of MS2 bacteriophage capsid protein binding specificity of packaging site [J]. <italic>Letters in Biotechnology</italic>, 2014, 25(2): 259−262.(in Chinese) doi: 10.3969/j.issn.1009-0002.2014.02.025
    [27] 冷超粮, 安同庆, 陈家锃, 等. 高致病性猪繁殖与呼吸综合征病毒GP5蛋白B表位诱导中和抗体能力的研究 [J]. 中国预防兽医学报, 2011, 33(4):297−300. doi: 10.3969/j.issn.1008-0589.2011.04.11

    LENG C L, AN T Q, CHEN J Z, et al. The ability of B epitope in GP5 protein of highly pathogenic PRRSV to induce neutralizing antibody [J]. <italic>Chinese Journal of Preventive Veterinary Medicine</italic>, 2011, 33(4): 297−300.(in Chinese) doi: 10.3969/j.issn.1008-0589.2011.04.11
    [28] PLAGEMANN P G W. The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus [J]. <italic>Veterinary Immunology and Immunopathology</italic>, 2004, 102(3): 263−275. doi: 10.1016/j.vetimm.2004.09.011
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  348
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-03-19
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回