• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间作隔根对玉米/大豆光合、产量及土壤理化性质的影响

沈荔花 李娜 阮妙鸿 林文雄

沈荔花,李娜,阮妙鸿,等. 间作隔根对玉米/大豆光合、产量及土壤理化性质的影响 [J]. 福建农业学报,2020,35(11):1280−1288 doi: 10.19303/j.issn.1008-0384.2020.11.015
引用本文: 沈荔花,李娜,阮妙鸿,等. 间作隔根对玉米/大豆光合、产量及土壤理化性质的影响 [J]. 福建农业学报,2020,35(11):1280−1288 doi: 10.19303/j.issn.1008-0384.2020.11.015
SHEN L H, LI N, RUAN M H, et al. Effects of Interactions between Roots of Intercropped Maize and Soybean on Plant Photosynthesis, Crop Yield, and Soil Physiochemical Properties [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1280−1288 doi: 10.19303/j.issn.1008-0384.2020.11.015
Citation: SHEN L H, LI N, RUAN M H, et al. Effects of Interactions between Roots of Intercropped Maize and Soybean on Plant Photosynthesis, Crop Yield, and Soil Physiochemical Properties [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1280−1288 doi: 10.19303/j.issn.1008-0384.2020.11.015

间作隔根对玉米/大豆光合、产量及土壤理化性质的影响

doi: 10.19303/j.issn.1008-0384.2020.11.015
基金项目: 国家重点研发计划课题(2017YFD0301602);中央引导地方科技发展专项(2017L3003);福建省科技计划对外合作项目(2018I0002);莆田市涵江区大洋乡车口生态果园技术服务项目(KH200102A)
详细信息
    作者简介:

    沈荔花(1979−),女,副教授,研究方向:植物生理生态(E-mail:slh1213chenry@163.com

    通讯作者:

    林文雄(1957−),男,教授,研究方向:作物生理与分子生态学(E-mail:lwx@fafu.edu.cn

  • 中图分类号: S 344.2

Effects of Interactions between Roots of Intercropped Maize and Soybean on Plant Photosynthesis, Crop Yield, and Soil Physiochemical Properties

  • 摘要:   目的  了解间作系统中地下部分的根间互作对光合特性、产量及土壤理化性质的影响,探究间作增产的机制,为玉米大豆间作栽培技术提供理论依据和技术支撑。  方法  采用大田栽培的方式对玉米/大豆的根系分别采取塑料膜隔离(全隔,Q)处理、尼龙网隔离(网隔,W)处理和无隔离(无隔,N)处理,开展3种根系隔离处理对间作作物的SPAD值、光合特性、产量及土壤理化性质的影响研究。  结果  与单作相比,不隔根处理下间作玉米、大豆功能叶的叶绿素含量分别提高了10.36%、9.65%。玉米和大豆的净光合速度、气孔导度、胞间CO2浓度和蒸腾速率基本上表现为:无隔>网隔>全隔>单作。根间完全或部分互作均提高了间作作物的产量。无隔根处理下土地当量比(LER)为1.39、尼龙网隔根的为1.13。根间完全或部分互作也增加了玉米和大豆根际土壤全氮、全磷、全钾、速效氮、速效磷和速效钾的含量。无隔根处理和尼龙网隔根处理下玉米和大豆根际土壤过氧化氢酶、酸性磷酸单酯酶、脲酶、蔗糖酶和过氧化物酶的活性均有所提高。部分土壤酶活性与土壤养分含量之间存在着显著相关。  结论  根间互作能够活化土壤营养库,增强土壤酶活性,增加间作作物的叶绿素含量,提升系统的光合作用能力,从而促进间作系统产出。
  • 图  1  不同隔根处理对玉米和大豆SPAD值的影响

    注:N、W、Q、D、M、S分别表示间作不隔根、间作尼龙网隔根、间作塑料膜隔根、单作、玉米和大豆。不同的小写字母表示P<0.05水平差异显著。

    Figure  1.  Effects of restricted root-interactions on SPAD of intercropped maize and soybean plants

    Note: N, W, Q, D, M, and S denote intercropping without root barrier, intercropping with nylon mesh root barrier, intercropping with plastic sheet root barrier, monoculture, maize, and soybean, respectively. Data with different lowercase letters indicate significant different at P<0.05.

    表  1  不同隔根处理对间作玉米和大豆的光合作用的影响

    Table  1.   Effects of restricted root-interactions on photosynthesis of intercropped maize and soybean plants

    处理
    Treatments
    净光合速率
    Pn/(μmol·m−2·s−1
    气孔导度
    Gs/(mmol·m−2·s−1
    胞间CO2浓度
    Ci/(μmol·mol−1
    蒸腾速率
    Tr/(mmol·m−2·s−1
    N-M48.83 a0.73 a346.00 a5.08 a
    W-M49.02 a0.60 ab352.56 a4.46 a
    Q-M38.87 b0.45 b246.33 b4.33 a
    D-M39.79 b0.42 b217.33 b4.33 a
    N-S27.40 a0.66 a163.00 a7.18 a
    W-S27.21 a0.59 ab83.31 ab7.31 a
    Q-S22.88 b0.48 bc89.60 ab7.06 a
    D-S22.74 b0.40 c58.18 b7.00 a
    注:同列不同小写字母表示P<0.05水平差异显著。表24
    Note: Data with different lowercase letters on same column indicate significant different at P<0.05. Table 2-4.
    下载: 导出CSV

    表  2  不同隔根处理对间作玉米和大豆百粒重、籽粒产量和土地当量比的影响

    Table  2.   Effects of restricted root-interactions on hundred-grain weight, grain yield, and LER of intercropped maize and soybean

    处理
    Treatments
    百粒重
    Hundred-grain weight/g
    籽粒产量
    Grain yield/(kg·hm−2
    土地当量比
    (LER)
    MSMS
    N32.98±1.32 a16.67±0.45 ab3231.29±168.71 a887.62±60.97 ab1.39±0.16
    W32.33±1.88 a17.34±0.73 a2324.26±123.76 ab932.91±92.48 a1.13±0.11
    Q28.73±1.34 b16.46±0.90 b2021.92±114.62 b717.04±81.27 bc0.98±0.03
    D27.06±0.39 b15.79±0.69 b2006.80±325.26 b637.88±22.90 c
    下载: 导出CSV

    表  3  不同隔根处理对大豆和玉米根际土壤N、P、K含量的影响

    Table  3.   Effects of restricted root-interactions on NPK in rhizosphere soil of maize/soybean intercropping system

    处理
    Treatments
    全氮
    Total N/(g·hg−1
    速效氮
    Available N/(mg·kg−1
    全磷
    Total P/(g·hg−1)
    速效磷
    Available P/(mg·kg−1
    全钾
    Total K/(g·hg−1
    速效钾
    Available K(mg·kg−1
    N-M2.92 b132.42 a0.52 a66.70 a0.31 a14.00 ab
    W-M3.12 a130.08 a0.45 b35.30 b0.30 ab14.47 a
    Q-M2.91 b119.00 b0.34 c27.10 c0.29 bc13.40 ab
    D-M2.79 b126.00 ab0.36 c34.00 b0.27 c13.00 b
    N-S3.06 a140.00 a0.52 a69.40 a0.28 a24.02 a
    W-S2.68 b138.83 ab0.48 b64.50 b0.30 a21.87 b
    Q-S2.74 ab126.00 b0.47 b62.00 b0.30 a21.80 b
    D-S2.98 ab131.80 bc0.41 c62.76 b0.30 a18.00 c
    下载: 导出CSV

    表  4  不同隔根处理对大豆和玉米根际土壤酶活性的影响

    Table  4.   Effects of restricted root-interactions on enzyme activity in rhizosphere soil of maize/soybean intercropping system

    处理
    Treatments
    过氧化氢酶
    Catalase/(mg·g−1
    酸性磷酸单酯酶
    Acid phosphatase/(mg·g−1
    脲酶
    Urease/(mg·g−1
    蔗糖酶
    Sucrase/(mg·g−1
    过氧化物酶
    Peroxidase/(mg·g−1
    N-M 6.28 a 6.33 a 9.71 ab 3.20 a 1.30 a
    W-M 6.28 a 5.97 b 10.42 a 2.64 b 1.30 a
    Q-M 4.69 c 5.22 c 8.05 bc 3.00 b 1.26 a
    D-M 4.99 b 5.23 c 7.54 c 2.06 c 1.19 a
    N-S 5.67 a 5.60 a 8.22 ab 2.17 b 1.54 a
    W-S 5.65 a 5.10 ab 8.93 a 2.54 a 1.47 ab
    Q-S 5.10 b 4.84 b 8.04 ab 1.97 c 1.34 b
    D-S 5.30 b 4.73 b 7.04 b 2.13 b 1.44 ab
    下载: 导出CSV

    表  5  大豆及玉米的根际土壤养分含量与酶活性的相关性

    Table  5.   Correlation between nutrient content and enzyme activity in rhizosphere soil of maize/soybean intercropping system

    速效氮
    Available N
    速效磷
    Available P
    速效钾
    Available K
    过氧化氢酶
    Catalase
    脲酶
    Urease
    酸性磷酸单酯酶
    Acid phosphatase
    过氧化物酶
    Peroxidase
    蔗糖酶
    Sucrase
    速效氮 Available N S 1.000 0.763 0.554 −0.550 0.609 0.804 0.953 0.729
    M 1.000 0.756 0.990 0.992 0.859 0.984 0.980 0.666
    速效磷 Available P S 1.000 0.961 −0.959 0.048 0.998* 0.923 0.115
    M 1.000 0.655 0.665 0.313 0.861 0.611 0.992
    速效钾 Available K S 1.000 −1.000** 0.323 0.941 0.780 −0.165
    M 1.000 1.000** 0.923 0.948 0.998* 0.553
    过氧化氢酶 Catalase S 1.000 0.328 −0.939 −0.777 0.170
    M 1.000 0.918 0.953 0.998* 0.564
    脲酶 Urease S 1.000 0.018 0.340 0.987
    M 1.000 0.753 0.943 0.190
    酸性磷酸单酯酶 Acid phosphatase S 1.000 0.946 0.179
    M 1.000 0.929 0.789
    过氧化物酶 Peroxidase S 1.000 0.488
    M 1.000 0.505
    蔗糖酶 Sucrase S 1.000
    M 1.000
    注:* 表示显著相关( P <0.05);** 表示极显著相关(P<0.01)。
    Note: * means significant correlation (P<0.05); ** means very significant correlation (P<0.01).
    下载: 导出CSV
  • [1] 刘天学, 王振河, 董朋飞, 等. 玉米间作系统的生理生态效应研究进展 [J]. 玉米科学, 2007, 15(5):114−116. doi: 10.3969/j.issn.1005-0906.2007.05.029

    LIU T X, WANG Z H, DONG P F, et al. Research Progress of Physiological and Ecological Effects in Maize Intercropping System [J]. Journal of Maize Sciences, 2007, 15(5): 114−116.(in Chinese) doi: 10.3969/j.issn.1005-0906.2007.05.029
    [2] 曹敏建.耕作学 [M].第2版. 北京: 中国农业出版社, 2013: 71–74.
    [3] 王自奎, 吴普特, 赵西宁, 等. 作物间套作群体光能截获和利用机理研究进展 [J]. 自然资源学报, 2015, 30(6):1057−1066. doi: 10.11849/zrzyxb.2015.06.016

    WANG Z K, WU P T, ZHAO X N, et al. A Review of Light Interception and Utilization by Intercropped Canopies [J]. Journal of Natural Resources, 2015, 30(6): 1057−1066.(in Chinese) doi: 10.11849/zrzyxb.2015.06.016
    [4] LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, et al. Annual intercrops: an alternative pathway for sustainable agriculture [J]. Aust J Crop Sci, 2011, 5: 396−410.
    [5] LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping [J]. Journal of Integrative Agriculture, 2016, 15(1): 101−110. doi: 10.1016/S2095-3119(15)61089-9
    [6] 左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响 [J]. 植物生理与分子生物学学报, 2003, 29(1):33−38.

    ZUO Y M, LIU Y X, ZHANG F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut [J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(1): 33−38.(in Chinese)
    [7] XIONG H C, KAKEI Y, KOBAYASHI T, et al. Molecular evidence for phytosiderophore—induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil [J]. Plant, Cell & Environment, 2013, 36(10): 1888−1902.
    [8] 周海燕, 柴强, 黄高宝, 等. 绿洲灌区典型间作模式的产量和光能利用效率 [J]. 甘肃农业大学学报, 2012, 47(6):68−73. doi: 10.3969/j.issn.1003-4315.2012.06.012

    ZHOU H Y, CHAI Q, HUANG G B, et al. The yield and light use efficiency of different intercropping systems in the Hexi Oasis irrigation area [J]. J Gansu Agric Univ, 2012, 47(6): 68−73.(in Chinese) doi: 10.3969/j.issn.1003-4315.2012.06.012
    [9] 罗晓棉, 林文雄. 福建山区玉米与花生不同间作比例对产量的影响及其生态机制 [J]. 福建农业学报, 2006, 31(4):338−344. doi: 10.3969/j.issn.1008-0384.2006.04.010

    LUO X M, LIN W X. Effect of Varied Maize—peanut Intercropping on Crop yield and ecology at Mountainous Regions in Fujian [J]. Journal of Agricultural Sciences, 2006, 31(4): 338−344.(in Chinese) doi: 10.3969/j.issn.1008-0384.2006.04.010
    [10] 林伟伟, 罗晓棉, 林文雄. 玉米与花生间作的根际互惠方式及其机制 [J]. 福建农林大学学报(自然科学版), 2019, 48(4):409−417.

    LIN W W, LUO X M, LIN W X. Rhizosphcric mutual facilitation mode and its mechanism under maize/peanut intercropping system [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(4): 409−417.(in Chinese)
    [11] AWAL M A, KOSHI H, IKEDA T. Radiation interception and use by maize /peanut intercrop canopy [J]. Agricultural & Forest Meteorology, 2006, 139(1/2): 74−83.
    [12] MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation [J]. Field Crops Research, 2001, 71(3): 183−193. doi: 10.1016/S0378-4290(01)00158-7
    [13] 焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究 [J]. 作物学报, 2006, 32(6):917−923. doi: 10.3321/j.issn:0496-3490.2006.06.022

    JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut [J]. Acta Agronomica Sinica, 2006, 32(6): 917−923.(in Chinese) doi: 10.3321/j.issn:0496-3490.2006.06.022
    [14] 李洪岐, 蔺海明, 梁书荣, 等. 密度和种植方式对夏玉米酶活性和产量的影响 [J]. 生态学报, 2012, 32(20):6584−6590. doi: 10.5846/stxb201203050294

    LI H Q, LIN H M, LIANG S R, et al. Effects of planting densities and modes on activities of some enzymes and yield in summer maize [J]. Acta Ecologica Sinica, 2012, 32(20): 6584−6590.(in Chinese) doi: 10.5846/stxb201203050294
    [15] 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用 [J]. 作物学报, 1999, 25(1):16−24. doi: 10.3321/j.issn:0496-3490.1999.01.003

    HUANF G B. Development of lightutilization theory for wheat/corn intercropping in condition of intensive cultivation [J]. Acta Agron Sin, 1999, 25(1): 16−24.(in Chinese) doi: 10.3321/j.issn:0496-3490.1999.01.003
    [16] 殷文, 赵财, 于爱忠, 等. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响 [J]. 作物学报, 2015, 41(4):633−641. doi: 10.3724/SP.J.1006.2015.00633

    YIN W, ZHAO C, YU A Z, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat-maize intercropping system [J]. Acta Agron Sin, 2015, 41(4): 633−641.(in Chinese) doi: 10.3724/SP.J.1006.2015.00633
    [17] FIRBANK L G, WATKINSO A R. On the effects of competition: from monocultures to mixtures [M]// GRACE J B, TILMAN D. Perspectives on Plant Competition. San Diego: Elsevier, 1990: 165–192.
    [18] 张宏芝, 陈兴武, 雷钧杰, 等. 杏麦间作模式下小麦光合速率、叶绿素荧光及产量对追氮量和播种密度的响应 [J]. 麦类作物学报, 2015, 35(3):387−393. doi: 10.7606/j.issn.1009-1041.2015.03.015

    ZHANG H Z, CHEN X W, LEI J J, et al. Effect of planting density and topdressing nitrogen on photosynthetic rate and chlorophyll fluorescence and yield of wheat under apricot-wheat intercropping [J]. J Triticeae Crops, 2015, 35(3): 387−393.(in Chinese) doi: 10.7606/j.issn.1009-1041.2015.03.015
    [19] 杨文亭, 王晓维, 王建武. 豆科-禾本科间作系统中作物和土壤氮素相关研究进展 [J]. 生态学杂志, 2013, 32(9):2480−2484.

    YANG W T, WANG X W, WANG J W. Crop-and soil nitrogen in legume-Gramineae intercropping system:Research progress [J]. Chinese Journal of Ecology, 2013, 32(9): 2480−2484.(in Chinese)
    [20] 张向前, 黄国勤, 卞新民, 等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响 [J]. 生态学报, 2012, 32(22):7082−7090. doi: 10.5846/stxb201110151526

    ZHANG X Q, HUANG G Q, BIAN X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils [J]. Acta Ecologica Sinica, 2012, 32(22): 7082−7090.(in Chinese) doi: 10.5846/stxb201110151526
    [21] 李玉英, 庞发虎, 孙建好, 等. 根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响 [J]. 中国农业大学学报, 2010, 15(4):13−19.

    LI Y Y, PANG F H, SUN J H, et al. Effects of root barrier between intercropped maize and faba bean and nitrogen(N) application on the spatial distributions and morphology of crops'roots [J]. Journal of China Agricultural University, 2010, 15(4): 13−19.(in Chinese)
    [22] 姜莉, 陈源泉, 隋鹏, 等. 不同间作形式对玉米根际土壤酶活性的影响 [J]. 中国农学通报, 2010, 26(9):326−330.

    JIANG L, CHEN Y Q, SUI P, et al. The Rhizosphere Soil Enzyme Activities of Different Corn Intercropping System [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 326−330.(in Chinese)
    [23] 徐华勤, 肖润林, 向佐湘, 等. 稻草覆盖、间作三叶草茶园土壤酶活性与养分的关系 [J]. 生态学杂志, 2009, 28(8):1537−1543.

    XU H Q, XIAO R L, XIANG Z X, et al. Soil enzyme activities and their relations with soil fertility in a tea plantation under straw mulching and white clover intercropping [J]. Chinese Journal of Ecology, 2009, 28(8): 1537−1543.(in Chinese)
    [24] 柴强, 黄高宝, 黄鹏, 等. 间甲酚及施磷对小麦间作蚕豆土壤微生物和酶活性的影响 [J]. 生态学报, 2006, 26(2):383−390. doi: 10.3321/j.issn:1000-0933.2006.02.010

    CHAI Q, HUANG G B, HUANG P, et al. Effect of 3-methy-phenol and phosphorous on soil microbes and enzyme activity in wheat faba-bean intercropping systems [J]. Acta Ecologica Sinica, 2006, 26(2): 383−390.(in Chinese) doi: 10.3321/j.issn:1000-0933.2006.02.010
    [25] 张恩和. 供磷水平对间套作物根系酸性磷酸酶活性的影响 [J]. 西北植物学报, 2001, 21(1):53−58. doi: 10.3321/j.issn:1000-4025.2001.01.009

    ZHANG E H. Effects of P application on root acid phosphates of crops in intercropping [J]. Acta Bot Boreal-Occident Sin, 2001, 21(1): 53−58.(in Chinese) doi: 10.3321/j.issn:1000-4025.2001.01.009
    [26] 刘均霞, 陆引罡, 远红伟, 等. 玉米、大豆间作对根际土壤微生物数量和酶活性的影响 [J]. 贵州农业科学, 2007, 35(2):60−61, 64. doi: 10.3969/j.issn.1001-3601.2007.02.022

    LIU J X, LU Y G, YUAN H W, et al. Effects of Intercrop Maize and Soybean on Rhizosphere Soil Microbes and Enzyme Activity [J]. Guizhou Agricultural Sciences, 2007, 35(2): 60−61, 64.(in Chinese) doi: 10.3969/j.issn.1001-3601.2007.02.022
    [27] 王晓丽. 地膜覆盖、带幅及根系相互作用对间作优势及氮磷养分高效利用的影响[D]. 北京: 中国农业大学, 2002.
    [28] 杜进勇, 柴强, 王一帆, 等. 地上地下互作强度对小麦间作玉米光合特性的影响 [J]. 作物学报, 2019, 45(9):1398−1406.

    DU J Y, CHAI Q, WANG Y F, et al. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398−1406.(in Chinese)
    [29] 叶优良. 间作对氮素和水分利用的影响[D]. 北京: 中国农业大学, 2003.
    [30] 史瑞和. 植物营养学原理[M]. 北京: 中国农业出版社. 1990.
    [31] 任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制 [J]. 生态学报, 2015, 35(12):4168−4177.

    REN Y Y, WANG Z L, WANG X L, et al. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau [J]. Acta Ecologica Sinica, 2015, 35(12): 4168−4177.(in Chinese)
    [32] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [33] 王一帆, 秦亚洲, 冯福学, 等. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响 [J]. 作物学报, 2017, 43(5):754−762. doi: 10.3724/SP.J.1006.2017.00754

    WANG Y F, QIN Y Z, FENG F X, et al. Synergistic effect of root interaction and density on yield and yield components of wheat-maize intercropping system [J]. Acta Agron Sin, 2017, 43(5): 754−762.(in Chinese) doi: 10.3724/SP.J.1006.2017.00754
    [34] 焦念元, 李亚辉, 刘领, 等. 隔根对玉米Ⅱ花生间作光合特性与间作优势的影响 [J]. 植物生理学报, 2016, 52(6):886−894.

    JIAO N Y, LI Y H, LIU L, et al. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maizeⅡpeanut intercropping [J]. Plant Physiology Communications, 2016, 52(6): 886−894.(in Chinese)
    [35] 焦念元, 宁堂原, 杨萌珂, 等. 玉米花生间作对玉米光合特性及产量形成的影响 [J]. 生态学报, 2013, 33(14):4324−4330. doi: 10.5846/stxb201207311087

    JIAO N Y, NING T Y, YANG M K, et al. Effects of maize—peanut intercropping on photosynthetic characters and yield forming of intercropped maize [J]. Acta Ecologica Sinica, 2013, 33(14): 4324−4330.(in Chinese) doi: 10.5846/stxb201207311087
    [36] 邵瑞鑫, 李蕾蕾, 郑会芳, 等. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响 [J]. 中国农业科学, 2016, 49(2):251−259. doi: 10.3864/j.issn.0578-1752.2016.02.006

    SHAO R X, LI L L, ZHENG H F, et al. Effects of Exogenous Nitric Oxide on Photosynthesis of Maize Seedlings Under Drought Stress [J]. Scientia Agricultura Sinica, 2016, 49(2): 251−259.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.02.006
    [37] 廖良宁, 汤文艳, 潘婷, 等. 施氮及根系分隔处理对间作尾巨桉和降香黄檀幼苗光合生理特性的影响 [J]. 西南林业大学学报, 2019, 39(2):60−69.

    LIAO L N, TANG W Y, PAN T, et al. Effects of Nitrogen Fertilizer Application and Root Partition on the Photosynthetic Physiological Characteristics of Eucalyptus urophylla×Eucalyptus grandis and Dallergia odorifera Seedling [J]. Journal of Southwest Forestry College, 2019, 39(2): 60−69.(in Chinese)
    [38] SCHLOTER M, DILLY O, MUNCH J C. Indicators for evaluating soil quality [J]. Agriculture, Ecosystems & Environment, 2003, 98(1/2/3): 255−262. doi: 10.1016/S0167-8809(03)00085-9
    [39] 徐强, 程智慧, 孟焕文, 等. 玉米/线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系 [J]. 应用生态学报, 2007, 18(12):2747−2754.

    XU Q, CHENG Z H, MENG H W, et al. Relationships between soil nutrients and rhizosperic soil microbial communities and enzyme activities in a maizecapsicum intercropping system [J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2747−2754.(in Chinese)
    [40] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥田土壤酶活性的动态变化特征 [J]. 生态环境, 2008, 17(5):2059−2063.

    Sun R L, Zhao B Q, Zhu L S, et al. Dynamic changes of soil enzyme activities in long-term fertilization soil [J]. Ecology and Environment, 2008, 17(5): 2059−2063.(in Chinese)
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  196
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-16
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回