• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同茶类制法对茶多酚和游离氨基酸化学模式的影响

陈林 陈键 王丽丽 宋振硕 尤志明

陈林, 陈键, 王丽丽, 宋振硕, 尤志明. 不同茶类制法对茶多酚和游离氨基酸化学模式的影响[J]. 福建农业学报, 2017, 32(3): 287-293. doi: 10.19303/j.issn.1008-0384.2017.03.012
引用本文: 陈林, 陈键, 王丽丽, 宋振硕, 尤志明. 不同茶类制法对茶多酚和游离氨基酸化学模式的影响[J]. 福建农业学报, 2017, 32(3): 287-293. doi: 10.19303/j.issn.1008-0384.2017.03.012
CHEN Lin, CHEN Jian, WANG Li-li, SONG Zhen-shuo, YOU Zhi-ming. Chemical Patterns of Polyphenols and Free Amino Acids in Teas Affected by Processing Methods[J]. Fujian Journal of Agricultural Sciences, 2017, 32(3): 287-293. doi: 10.19303/j.issn.1008-0384.2017.03.012
Citation: CHEN Lin, CHEN Jian, WANG Li-li, SONG Zhen-shuo, YOU Zhi-ming. Chemical Patterns of Polyphenols and Free Amino Acids in Teas Affected by Processing Methods[J]. Fujian Journal of Agricultural Sciences, 2017, 32(3): 287-293. doi: 10.19303/j.issn.1008-0384.2017.03.012

不同茶类制法对茶多酚和游离氨基酸化学模式的影响

doi: 10.19303/j.issn.1008-0384.2017.03.012
基金项目: 

福建省农业科学院科技创新团队建设项目 CXTD-1-1302

福建省自然科学基金项目 2016J01121

福建省科技计划项目——省属公益类科研院所基本科研专项 2015R1101017-1

福建省科技计划项目——省属公益类科研院所基本科研专项 2016R1102002-1

福建省科技重大专项专题项目 2017NZ0002-1

详细信息
    作者简介:

    陈林 (1975-), 男, 博士, 副研究员, 主要从事茶叶加工、茶叶生物化学及综合利用研究 (E-mail:chenlin_xy@163.com)

    通讯作者:

    尤志明 (1964-), 男, 研究员, 主要从事茶树栽培与生理研究 (E-mail:youzm@faas.cn)

  • 中图分类号: TS272.5;Q946.84+1

Chemical Patterns of Polyphenols and Free Amino Acids in Teas Affected by Processing Methods

  • 摘要: 多酚类物质和游离氨基酸是茶叶重要品质成分。本研究将金观音、黄观音、福云6号等7个福建茶树品种春梢鲜叶原料分别加工成4种茶类(绿茶、白茶、红茶和乌龙茶),并分析比较了鲜叶原料及其所制茶类的茶多酚、游离氨基酸总量、儿茶素类和游离氨基酸组分的模式差异。结果表明,基于供试茶样(茶多酚×游离氨基酸)含量的二维“点集”分布视图可将4种茶类及其鲜叶原料划分成3个主要类群:绿茶、白茶和一芽二、三叶鲜叶样;乌龙茶和中、小开面二至四叶鲜叶样;红茶样。鲜叶原料采摘标准是乌龙茶有别于其他茶类的首要影响因素。通过供试茶样儿茶素类和游离氨基酸的靶标检测,采用主成分分析(PCA)可进一步比较白茶与其他茶类化学轮廓的模式差异。茶叶在加工过程中简单儿茶素较酯型儿茶素更易趋于氧化减少,萎凋工序则有助于白茶游离氨基酸(苏氨酸和亮氨酸)的形成或保留。
  • 图  1  供试茶样茶多酚 (TPs) 和游离氨基酸 (FAAs) 含量

    注:图中茶多酚、游离氨基酸平均含量分别为[红茶:(10.37±2.29eC)%、(4.73±0.35bAB)%],[绿茶:(18.40±1.42abA)%、(5.19±0.81abAB)%],[幼嫩叶:(18.76±1.30aA)%、(4.72±0.56bB)%],[白茶:(16.98±1.39bcAB)%、(5.90±0.82aA)%],[成熟叶:(16.29±0.57cdAB)%、(1.72±0.42cC)%],[乌龙茶:(15.10±0.86dB)%、(1.98±1.00cC)%],数据后不同大、小写字母表示差异达极显著 (P<0.01) 或显著 (P<0.05) 水平。

    Figure  1.  Scatter plot of polyphenols and FAAs in tea samples

    图  2  基于供试茶样儿茶素类含量的主成分分析

    注:变量采用Par-scaling标度化预处理。图 3同。

    Figure  2.  Scatter plot of PCA scores on catechin contents of tea samples

    图  3  基于供试游离氨基酸含量的主成分分析

    Figure  3.  Scatter plot of PCA scores on FAAs contents of tea samples

    表  1  4种茶类及其鲜叶原料样品编码

    Table  1.   Sample codes of teas and their leafraw materials

    茶树品种采摘标准鲜叶绿茶白茶红茶乌龙茶
    金观音幼嫩叶Y1G1W1B1
    黄观音幼嫩叶Y2G2W2B2-
    福云6号幼嫩叶Y3(1)G3(1)W3(1)B3(1)-
    福云6号幼嫩叶Y3(2)G3(2)W3(2)B3(2)-
    福鼎大毫茶幼嫩叶Y4G4W4--
    福安大白茶幼嫩叶Y5G5W5--
    金观音成熟叶M1---O1
    黄观音成熟叶M2---O2
    铁观音成熟叶M3---O3
    黄棪成熟叶M4---O4
    注:福云6号茶树品种加工2个批次;乌龙茶样品为毛茶样。全部茶样共计30份,“-”表示未加工该茶类样品。
    下载: 导出CSV

    表  2  4种茶类及其鲜叶原料的儿茶素类含量

    Table  2.   Catechin contents in teas and their raw materials

    [单位/(mg·g-1干重)]
    组分嫩叶绿茶白茶红茶成熟叶乌龙茶
    GA1.66±1.39aA1.59±1.29aA2.42±1.78aA5.03±2.00aA1.02±0.22aA1.10±0.12aA
    C3.53±0.63aA3.36±0.40aA2.14±0.49bB0.51±0.34cC3.24±0.72aA3.11±0.63aA
    EC8.54±2.16aA8.45±1.83aA4.27±1.45bB2.27±2.45bB9.17±0.72aA9.70±0.96aA
    EGC32.98±15.48abAB31.06±14.32abAB14.46±9.14bAB1.26±1.59bB38.59±5.78aA34.96±8.97abAB
    GCG9.07±9.22aA8.28±6.89aA6.75±6.49aA4.11±2.75aA17.83±4.91aA13.80±0.87aA
    EGCG71.97±14.63aA70.02±15.01abAB56.01±15.54bcAB4.01±2.15dC55.31±6.94bcAB48.37±11.89cB
    ECG20.84±3.99aA20.65±3.43abA17.29±2.94bA4.09±2.84dC10.34±0.84cB9.91±1.13cBC
    注:不同种类茶样没食子酸及各儿茶素采用平均含量±标准偏差表示;根据方差齐次性检验结果,分别采用LSD法和Tamhane′s T2法对各成分平均含量进行多重比较。同行数据后不同大、小写字母表示差异达极显著 (P<0.01) 或显著 (P<0.05) 水平。表 3同。
    下载: 导出CSV

    表  3  4种茶类及其鲜叶原料的游离氨基酸含量

    Table  3.   FAAS contents in teas and their raw materials

    [单位/(mg·g-1干重)]
    组分嫩叶绿茶白茶红茶成熟叶乌龙茶
    Asp1.52±0.62aA1.77±0.90aA1.39±0.58aA1.05±0.14aA0.85±0.36aA0.90±0.38aA
    Glu2.06±0.8aA2.53±1.13aA1.08±0.4aA1.73±0.36aA1.17±0.34aA1.06±0.12aA
    Ser0.56±0.10aA0.73±0.20aA1.83±1.53aA1.17±0.46aA0.32±0.10aA0.65±0.16aA
    His0.92±0.49bB0.89±0.45bB1.28±0.85bAB2.21±0.82aA0.79±0.34bB0.98±0.22bB
    Gly0.42±0.42aA0.65±0.75aA0.67±0.76aA0.74±0.53aA0.33±0.19aA0.62±0.37aA
    Thr0.18±0.10bB0.29±0.05aAB0.37±0.11aA0.32±0.10aAB0.17±0.09bB0.30±0.11aAB
    Arg0.67±0.41aA0.78±0.50aA0.85±0.61aA0.70±0.35aA0.14±0.06aA0.17±0.08aA
    Ala0.25±0.05abA0.31±0.07abA0.81±0.30aA0.54±0.17abA0.16±0.09bA0.31±0.11abA
    THE13.83±4.31abA15.97±4.15aA13.03±4.54abAB9.74±0.51bcABC5.35±2.73cC6.85±3.45cBC
    Tyr0.35±0.50aA0.03±0.04aA0.47±0.44aA0.32±0.52aA0.13±0.09aA0.34±0.34aA
    Cys0.26±0.34aA0.36±0.41aA1.16±1.35aA1.26±0.85aA0.53±0.51aA0.86±0.40aA
    Val0.03±0.04aA0.15±0.24aA0.48±0.40aA0.40±0.36aA0.03±0.01aA0.13±0.10aA
    Met1.07±1.19aA0.96±1.09aA0.62±0.82aA0.80±0.98aA0.79±0.37aA0.68±0.32aA
    Phe0.05±0.07aA0.25±0.43aA0.63±0.57aA0.37±0.31aA0.07±0.03aA0.38±0.24aA
    Ile0.02±0.02aA0.11±0.20aA0.35±0.29aA0.19±0.13aA0.03±0.02aA0.12±0.05aA
    Leu0.04±0.05cB0.19±0.22bcAB0.47±0.22aA0.31±0.21abAB0.13±0.14bcB0.18±0.12bcAB
    Lys0.05±0.06aA0.16±0.20aA0.53±0.39aA0.32±0.21aA0.13±0.11aA0.32±0.14aA
    下载: 导出CSV
  • [1] LI X L, HE Y. Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks[J]. Biosyst Eng, 2008, 99(3):313-321. doi: 10.1016/j.biosystemseng.2007.11.007
    [2] LIN J, ZHANG P, PAN Z Q, et al. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS[J]. Food Chem, 2013, 141(1):259-265. doi: 10.1016/j.foodchem.2013.02.128
    [3] CHENG Q, YANG F, WANG D H, et al. Discrimination of Minnan oolong tea varieties by NIR spectroscopy[J]. Spectrosc Spect Anal, 2014, 34(3):656-659. https://www.ncbi.nlm.nih.gov/pubmed/25208385
    [4] LEE J E, LEE B J, CHUNG J O, et al. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:A H-1 NMR-based metabolomics study[J]. J Agric Food Chem, 2010, 58(19):10582-10589. doi: 10.1021/jf102415m
    [5] YE N S, ZHANG L Q, GU X X. Discrimination of green teas from different geographical origins by using HS-SPME/GC-MS and pattern recognition methods[J]. Food Anal Methods, 2012, 5(4):856-860. doi: 10.1007/s12161-011-9319-9
    [6] XU W P, SONG Q S, LI D X, et al. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition[J]. J Agric Food Chem, 2012, 60(28):7064-7070. doi: 10.1021/jf301340z
    [7] ALCAZAR A, BALLESTEROS O, JURADO J M, et al. Differentiation of green, white, black, oolong, and Pu-erh teas according to their free amino acids content[J]. J Agric Food Chem, 2007, 55(15):5960-5965. doi: 10.1021/jf070601a
    [8] FUJIWARA M, ANDO I, ARIFUKU K. Multivariate analysis for H-1-NMR spectra of two hundred kinds of tea in the world[J]. Anal Sci, 2006, 22(10):1307-1314. doi: 10.2116/analsci.22.1307
    [9] 彭继宇, 宋星霖, 刘飞, 等.基于波谱技术的茶树生长与茶叶品质信息快速检测研究进展[J].光谱学与光谱分析, 2016, 36(3):775-782. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201603041.htm
    [10] QIN Z H, PANG X L, CHEN D, et al. Evaluation of Chinese tea by the electronic nose and gas chromatography-mass spectrometry:Correlation with sensory properties and classification according to grade level[J]. Food Res Int, 2013, 53(2):864-874. doi: 10.1016/j.foodres.2013.02.005
    [11] CHEN Q S, ZHAO J W, VITTAYAPADUNG S. Identification of the green tea grade level using electronic tongue and pattern recognition[J]. Food Res Int, 2008, 41(5):500-504. doi: 10.1016/j.foodres.2008.03.005
    [12] ZHAO J W, CHEN Q S, CAI J R, et al. Automated tea quality classification by hyperspectral imaging[J]. Appl Opt, 2009, 48(19):3557-3564. doi: 10.1364/AO.48.003557
    [13] 吴平.茶叶分类进展研究——兼论六堡茶的归属[J].茶叶科学, 2014, 34(4):408-416. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKK201404018.htm
    [14] WU Q J, DONG Q H, SUN W J, et al. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds[J]. J Agric Food Chem, 2014, 62(38):9336-9344. doi: 10.1021/jf5025483
    [15] TAN J F, DAI W D, LU M L, et al. Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Res Int, 2016, 79:106-113. doi: 10.1016/j.foodres.2015.11.018
    [16] HAN Z X, RANA M M, LIU G F, et al. Green tea flavour determinants and their changes over manufacturing processes[J]. Food Chem, 2016, 212:739-748. doi: 10.1016/j.foodchem.2016.06.049
    [17] LIN S Y, CHEN Y L, LEE C L, et al. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea[J]. J Hortic Sci Biotechnol, 2013, 88(2):159-164. doi: 10.1080/14620316.2013.11512951
    [18] 陈林, 陈键, 陈泉宾, 等.做青工艺对乌龙茶香气组成化学模式的影响[J].茶叶科学, 2014, 34(4):387-395. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKK201404014.htm
    [19] 许凌, 周卫龙, 高海燕, 等. GB/T 8303-2013茶磨碎试样的制备及其干物质含量测定[S]. 北京: 中国质检出版社 (中国标准出版社), 2014.
    [20] 周卫龙, 徐建峰, 许凌. GB/T 8313-2008茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2008.
    [21] 徐建峰, 周卫龙, 陆小磊, 等. GB/T 8314-2013茶游离氨基酸总量的测定[S]. 北京: 中国质检出版社 (中国标准出版社), 2014.
    [22] 王丽丽, 陈键, 宋振硕, 等.茶叶中没食子酸、儿茶素类和生物碱的HPLC检测方法研究[J].福建农业学报, 2014, 29(10):987-994. doi: 10.3969/j.issn.1008-0384.2014.10.011
    [23] 宋振硕, 王丽丽, 陈键, 等.茶鲜叶萎凋过程中游离氨基酸的动态变化规律[J].茶叶学报, 2015, 56(4):206-213. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKJ201504004.htm
    [24] 叶乃兴.茶叶品质性状的构成与评价[J].中国茶叶, 2010, 32(8):10-11. http://www.cnki.com.cn/Article/CJFDTOTAL-CAYA201008006.htm
    [25] TOUNEKTI T, JOUBERT E, HERNANDEZ I, et al. Improving the polyphenol content of tea[J]. Crit Rev Plant Sci, 2013, 32(3):192-215. doi: 10.1080/07352689.2012.747384
    [26] HARA Y. Tea catechins and their applications as supplements and pharmaceutics[J]. Pharmacol Res, 2011, 64(2):100-104. doi: 10.1016/j.phrs.2011.03.018
    [27] HIGDON J V, FREI B. Tea catechins and polyphenols:Health effects, metabolism, and antioxidant functions[J]. Crit Rev Food Sci Nutr, 2003, 43(1):89-143. doi: 10.1080/10408690390826464
    [28] 陈林, 陈键, 张应根, 等.清香型乌龙茶品质形成中游离氨基酸指纹图谱变化规律[J].农业工程学报, 2012, 28(17):244-252. doi: 10.3969/j.issn.1002-6819.2012.17.036
    [29] CHEN L, CHEN Q, ZHANG Z Z, et al. A novel colorimetric determination of free amino acids content in tea infusions with 2, 4-dinitrofluorobenzene[J]. J Food Compost Anal, 2009, 22(2):137-141. doi: 10.1016/j.jfca.2008.08.007
    [30] 杨伟丽, 肖文军, 邓克尼.加工工艺对不同茶类主要生化成分的影响[J].湖南农业大学学报:自然科学版, 2001, 27(5):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-HNND200105016.htm
    [31] 王贵芳. 丹桂在四茶类加工中主要生化成分的变化研究[D]. 福州: 福建农林大学, 2008.
    [32] LÜ S D, WU Y S, WEI J F, et al. Application of gas chromatography-mass spectrometry and chemometrics methods for assessing volatile profiles of Pu-erh tea with different processing methods and ageing years[J]. RSC Adv, 2015, 5(107):87806-87817. doi: 10.1039/C5RA15381F
    [33] 陈林, 陈键, 张应根, 等.清香型乌龙茶品质形成过程主要生化成分的动态变化规律[J].福建农业学报, 2012, 27(8):857-862. http://www.fjnyxb.cn/CN/abstract/abstract1979.shtml
    [34] 王文杰, 徐卫兵, 雷攀登, 等.我国制茶工艺技术的发展与方向[J].中国茶叶加工, 2012, (3):4-7. http://www.cnki.com.cn/Article/CJFDTOTAL-CYJG201203004.htm
    [35] LI S M, LO C Y, PAN M H, et al. Black tea:chemical analysis and stability[J]. Food Funct, 2013, 4(1):10-18. doi: 10.1039/C2FO30093A
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  155
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-03
  • 修回日期:  2017-01-20
  • 刊出日期:  2017-03-28

目录

    /

    返回文章
    返回