• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马尾松响应松材线虫侵染的基因动态表达变化

谢婉凤 李慧敏 黄爱珍 冯丽贞 张飞萍

谢婉凤, 李慧敏, 黄爱珍, 冯丽贞, 张飞萍. 马尾松响应松材线虫侵染的基因动态表达变化[J]. 福建农业学报, 2017, 32(4): 403-409. doi: 10.19303/j.issn.1008-0384.2017.04.010
引用本文: 谢婉凤, 李慧敏, 黄爱珍, 冯丽贞, 张飞萍. 马尾松响应松材线虫侵染的基因动态表达变化[J]. 福建农业学报, 2017, 32(4): 403-409. doi: 10.19303/j.issn.1008-0384.2017.04.010
XIE Wan-feng, LI Hui-ming, HUANG Ai-zhen, FENG Li-zhen, ZHANG Fei-ping. The Dynamic Change of Gene Expression from Pinus massoniana in Response to Bursaphelenchus xylophilus Infestation[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 403-409. doi: 10.19303/j.issn.1008-0384.2017.04.010
Citation: XIE Wan-feng, LI Hui-ming, HUANG Ai-zhen, FENG Li-zhen, ZHANG Fei-ping. The Dynamic Change of Gene Expression from Pinus massoniana in Response to Bursaphelenchus xylophilus Infestation[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 403-409. doi: 10.19303/j.issn.1008-0384.2017.04.010

马尾松响应松材线虫侵染的基因动态表达变化

doi: 10.19303/j.issn.1008-0384.2017.04.010
基金项目: 

福建省财政厅资助项目 K81139238

福建省财政厅资助项目 K8911010

详细信息
    作者简介:

    谢婉凤(1983-), 女, 讲师, 主要从事林木抗病的分子与生理机制研究

    通讯作者:

    张飞萍(1971-), 男, 教授, 博导, 主要从事昆虫生态学与森林害虫综合治理研究(E-mail:fpzhang1@163.com)

  • 中图分类号: S763.3

The Dynamic Change of Gene Expression from Pinus massoniana in Response to Bursaphelenchus xylophilus Infestation

  • 摘要: 松材线虫病是一种严重危害马尾松生长的流行性病害,可导致马尾松枯萎死亡。为揭示该过程中基因的表达变化行为,本研究利用荧光定量PCR技术检测了松材线虫侵染不同天数下的马尾松较其对照样本中病原识别、抗逆调节、次生代谢、解毒作用及生长素响应等相关基因的表达变化。结果显示,除了与病原识别相关的CC-NBS-LRR抗性蛋白基因的表达随侵染天数的增加而增强之外,其他基因则在侵染2 d的马尾松样本中的表达水平最高,且明显高于未受侵染的对照马尾松样本,随后在侵染3天的马尾松中的表达又低于对照样本。此外,黄酮-3-羟化酶和细胞色素P450基因的表达随着侵染虫量的增加呈先上调后下调的变化方式。通过本研究初步揭示了马尾松响应松材线虫侵染的基因表达变化模式。
  • 图  1  松材线虫侵染不同天数下的马尾松较其对照样本的茎干总RNA

    注:泳道1~3为受侵染马尾松茎干样本的总RNA;泳道4~6为对照马尾松茎干样本的总RNA。

    Figure  1.  Total RNA from the stems of P. massoniana after different days of B. xylophilus infestation and the corresponding control groups

    图  2  松材线虫侵染不同天数下的马尾松较其对照样本中的病原识别和抗逆调节基因的表达差异

    注:A为CC-NBS-LRR抗性蛋白基因;B为late embryogenesis基因;C为class Ⅶ chitinase基因;D为class Ⅵ chitinase基因。

    Figure  2.  The differentially expressed genes relative to pathogen recognition and resistance regulation from the stems of P. massoniana infected by B. xylophilus in comparison with the corresponding control groups

    图  3  松材线虫侵染不同天数下的马尾松较其对照样本中的植保素合成相关基因的表达差异

    注:A为flavonoid 3-hydroxylase基因;B为dihydroflavonol-4-reductase基因。

    Figure  3.  The differentially expressed genes involved phytoalexin synthesis from the stems of P. massoniana infected by B. xylophilus in comparison with the corresponding control groups

    图  4  松材线虫侵染不同天数下的马尾松较其对照样本中的细胞色素P450基因的表达差异

    注:A为cytochrome P450基因;B为cytochrome P450 mono-oxygenase superfamily基因;C为cytochrome P450 mono-oxygenase CYP7368基因。

    Figure  4.  The differentially expressed cytochrome P450 relevant genes from the stems of P. massoniana infected by B. xylophilus in comparison with the corresponding control groups

    图  5  松材线虫侵染不同天数下的马尾松较其对照样本中的生长素响应基因的表达差异

    注:A为auxin-responsive family protein基因;B为dormancy/auxin associated-like protein基因。

    Figure  5.  The differentially expressed genes involved in auxin-response from the stems of P. massoniana infected by B. xylophilus in comparison with the corresponding control groups

    图  6  不同数量松材线虫侵染下的马尾松茎中的FH和CYP基因表达变化

    注:A为FH基因;B为CYP基因。

    Figure  6.  Changes in the genes expression from the stems of P. massoniana after different quantities of B. xylophilus infestation

    表  1  待测基因及其荧光定量PCR引物序列

    Table  1.   The candidate genes and their primers sequence using for qPCR

    待测基因 上游引物序列 下游引物序列
    dihydroflavonol-4-reductase 5′-GCGATGCCGCTATTGT-3′ 5′-TGAGGGCTTGCGAGAA-3′
    CC-NBS-LRR resistance-like protein 5′-CCATAAGGATGTGAGAGCCA-3′ 5′-AAAGGTAGAAGTGCGAGAGG-3′
    late embryogenesis abundant-like protein 5′-TGCCAAGTGGGACGATG-3′ 5′-TGGACGGTGACGCTGTTT-3′
    class Ⅶ chitinase 5′-AGTTGAACCCTGCTCTGC-3′ 5′-GTGGAAACACCGACGAAG-3′
    flavonoid 3-hydroxylase 5′-CAACGGCGTGAATGCTAAG-3′ 5′-AGAAGGAAGGCGTGGAGT-3′
    class Ⅳ chitinase 5′-CGAGGGCAAGGGATTCTA-3′ 5′-ATTCCTGGCTGTTGATGGC-3′
    auxin-responsive family protein 5′-ACGCTGCTGCTGTTCTCC-3′ 5′-CCAGGCTGTGGCATCTTC-3′
    dormancy/auxin associated-like protein 5′-TTCAGGTCCCTTCTTTGC-3′ 5′-CTTTCGGTTTGTTTGCC-3′
    cytochrome P450 mono-oxygenase superfamily 5′-AATCCGTCGTAGGCAACA-3′ 5′-GCCCGCCACATAGAAAT-3′
    cytochrome P450 5′-GTCGGAAACCTCCACCAAC-3′ 5′-TAGGGACTGAGCCCAAGC-3′
    cytochrome P450 monooxygenase CYP736B 5′-GTGGTCTTTGCTCCGTTAGGG-3′ 5′-AGCGTTGGCGTCATTCTGC-3′
    actin 5′-CCTTGGCAATCCACATC-3′ 5′-TCACCACTACGGCAGAAC-3′
    下载: 导出CSV
  • [1] ZHAO B G. Pine wilt disease in China[M]. Pine wilt disease Springer, 2008: 18-25.
    [2] XU L, LIU Z Y, ZHANG K, et al. Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization[J]. International Journal of Molecular Sciences, 2013, 14(6): 11356-11375. doi: 10.3390/ijms140611356
    [3] ZHENG H Y, XU M, XU F Y, et al. A comparative proteomics analysis of Pinus massoniana inoculated with Bursaphelenchus xylophilus[J]. Pakistan Journal of Botany, 2015, 47(4): 1271-1280.
    [4] XIE W, HUANG A, LI H, et al. Identification and comparative analysis of microRNAs in Pinus massoniana infected by Bursaphelenchus xylophilus[J]. Plant Growth Regulation, 2016, doi: 10.1007/s10725-016-0221-8.
    [5] LⅣAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [6] HIRAO T, FUKATSU E, WATANABE A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization[J]. BMC Plant Biology, 2012, 12(1): 13. doi: 10.1186/1471-2229-12-13
    [7] SANTOS C S, PINHEIRO M, SILVA A I, et al. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening[J]. BMC Genomics, 2012, 13(1): 599. doi: 10.1186/1471-2164-13-599
    [8] DANGL J L, JONES J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833. doi: 10.1038/35081161
    [9] TAN S, WU S. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon[J]. Comparative and Functional Genomics, 2012:ID 418208.doi: 10.1155/2012/418208.
    [10] ELLIS J, DODDS P, PRYOR T. Structure, function and evolution of plant disease resistance genes[J]. Current Opinion in Plant Biology, 2000, 3(4): 278-284. doi: 10.1016/S1369-5266(00)00080-7
    [11] JONES J D, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286
    [12] HANIN M, BRINI F, EBEL C, et al. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms[J]. Plant Signaling & Behavior, 2011, 6(10): 1503-1509.
    [13] YAMAMOTO T, IKETANI H, IEKI H, et al. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens[J]. Plant Cell Reports, 2000, 19(7): 639-646. doi: 10.1007/s002999900174
    [14] NEUHAUS J M. Plant chitinases (pr-3, pr-4, pr-8, pr-11)[M]. Pathogenesis-related proteins in plants CRC Press, 1999:77-105.
    [15] PETIT P, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis[J]. Journal of Molecular Biology, 2007, 368(5): 1345-1357. doi: 10.1016/j.jmb.2007.02.088
    [16] CHAPPLE C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annual Review of Plant Biology, 1998, 49(1): 311-343. doi: 10.1146/annurev.arplant.49.1.311
    [17] RENAULT H, BASSARD J E, HAMBERGER B, et al. Cytochrome P450-mediated metabolic engineering: current progress and future challenges[J]. Current Opinion in Plant Biology, 2014, 19(19C): 27-34.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1332
  • HTML全文浏览量:  148
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2017-01-14
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回