• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

笋头膳食纤维复合酶法改性工艺优化及其理化特性评价

方东亚 郑亚凤

方东亚, 郑亚凤. 笋头膳食纤维复合酶法改性工艺优化及其理化特性评价[J]. 福建农业学报, 2019, 34(3): 364-370. doi: 10.19303/j.issn.1008-0384.2019.03.017
引用本文: 方东亚, 郑亚凤. 笋头膳食纤维复合酶法改性工艺优化及其理化特性评价[J]. 福建农业学报, 2019, 34(3): 364-370. doi: 10.19303/j.issn.1008-0384.2019.03.017
FANG Dong-ya, ZHENG Ya-feng. Enzymatic Hydrolysis for Producing Dietary Fibers from Bamboo Shoot Byproduct[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 364-370. doi: 10.19303/j.issn.1008-0384.2019.03.017
Citation: FANG Dong-ya, ZHENG Ya-feng. Enzymatic Hydrolysis for Producing Dietary Fibers from Bamboo Shoot Byproduct[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 364-370. doi: 10.19303/j.issn.1008-0384.2019.03.017

笋头膳食纤维复合酶法改性工艺优化及其理化特性评价

doi: 10.19303/j.issn.1008-0384.2019.03.017
基金项目: 

福建省高校青年自然科学基金重点项目 JZ160434

详细信息
    作者简介:

    方东亚(1994-), 女, 硕士研究生, 研究方向:农产品加工及贮藏(E-mail:fdongya@163.com)

    通讯作者:

    郑亚凤(1981-), 女, 教授, 研究方向:食品碳水化合物与营养(E-mail:zyffst@163.com)

  • 中图分类号: TS209

Enzymatic Hydrolysis for Producing Dietary Fibers from Bamboo Shoot Byproduct

  • 摘要:   目的  笋头是笋加工的主要副产物,是来源广泛且成本低廉的膳食纤维原料。传统的热水法制备的笋头膳食纤维由于纤维颗粒大,口感粗糙,在食品中添加应用易造成品质下降。为了推动笋头膳食纤维在食品加工中的应用,本文研究了复合酶法改性工艺对笋头膳食纤维的粒径及理化特性的影响。  方法  以热水法制备的笋头膳食纤维为原料,以纤维粒径为评价指标,通过单因素试验研究复合酶添加量、时间、温度和pH值对纤维粒径的影响。根据单因素结果,进行以Box-Behnken试验设计为基础的响应面优化试验。比较分析了改性前后笋头膳食纤维的理化特性变化。  结果  复合酶法改性笋头膳食纤维的最优工艺条件为:复合酶添加量0.20%(纤维素酶:木聚糖酶=1:1),温度47℃,pH 5.4,时间2.0 h。以优化后的复合酶解法处理的笋头膳食纤维的纤维粒径(D90)由(146.2±0.21)μm降低至(97.2±0.14)μm。相对于改性处理前的笋头膳食纤维,改性笋头膳食纤维的持水力、持油力和膨胀度分别提高1.30、2.16和1.64倍。  结论  经过工艺优化的复合酶法可显著减小笋头膳食纤维的纤维粒径,并显著提高纤维的持水力、持油力和膨胀度等理化性质。研究结果有利于推动笋头膳食纤维在功能食品加工中的应用。
  • 图  1  复合酶添加量对笋头膳食纤维粒径的影响

    Figure  1.  Effect of enzyme dosage on size of dietary fibers from BDF

    图  2  酶解pH对笋头膳食纤维粒径的影响

    Figure  2.  Effect of pH on size of dietary fibers from BDF

    图  3  酶解温度对笋头膳食纤维粒径的影响

    Figure  3.  Effect of temperature on size of dietary fibers from BDF

    图  4  酶解时间对笋头膳食纤维粒径的影响

    Figure  4.  Effect of hydrolysis time on size of dietary fibers from BDF

    图  5  不同因素的3D响应面

    Figure  5.  3D response surface contours on interaction of different factors

    表  1  响应面试验因素水平

    Table  1.   Factors and levels of response surface experiment

    水平
    Level
    复合酶添加量
    Composite enzyme dosage/%
    酶解pH
    pH for enzymolysis
    酶解温度
    Temperature for enzymolysis/℃
    -1 0.15 4.5 40
    0 0.20 5.0 45
    1 0.25 5.5 50
    下载: 导出CSV

    表  2  响应面分析方案及试验结果

    Table  2.   Response surface design and experimental results

    试验号
    Test number
    A复合酶添加量
    Composite enzyme dosages/%
    B酶解温度
    Temperature for enzymolysis/℃
    C酶解pH
    pH for enzymolysis
    粒径
    Particle size/μm
    1 -1 0 1 141.0
    2 0 -1 1 143.6
    3 -1 1 0 117.4
    4 0 0 0 103.2
    5 1 0 1 128.6
    6 0 -1 -1 131.5
    7 0 0 0 102.1
    8 0 1 -1 106.8
    9 1 -1 0 141.6
    10 0 0 0 102.3
    11 1 0 -1 111.5
    12 1 1 0 112.3
    13 -1 -1 0 138.5
    14 -1 0 -1 113.0
    15 0 0 0 106.6
    16 0 1 1 123.4
    17 0 0 0 103.5
    下载: 导出CSV

    表  3  响应面方差分析二次模型方差分析

    Table  3.   ANOVA for response surface model analysis of variance

    方差来源
    Variance source
    平方和
    Quadratic sum
    自由度
    Degree of freedom
    均方
    Mean square
    F值
    F-value
    Probe>F 显著性
    Significance
    模型Model 3675.54 9 408.39 41.92 < 0.0001 **
    复合酶添加量Composite enzyme dosages 31.6 1 31.6 3.24 0.1147
    酶解温度Temperature for enzymolysis 1135.26 1 1135.26 116.53 < 0.0001 **
    酶解pH pH for enzymolysis 680.8 1 680.8 69.88 < 0.0001 **
    AB 16.81 1 16.81 1.73 0.2304
    AC 29.7 1 29.7 3.05 0.1243
    BC 5.06 1 5.06 0.52 0.4944
    A2 469.09 1 469.09 48.15 0.0002 **
    B2 750.97 1 750.97 77.09 < 0.0001 **
    C2 374.42 1 374.42 38.43 0.0004 **
    残差Residue value 68.19 7 9.74
    失拟项Lack of fit 55.1 3 18.37 5.61 0.0645
    净误差Net error 13.09 4 3.27
    总离差Total deviation 3743.74 16
    注:若Probe>F值< 0.05,则表示该指标显著,用*表示;若Probe>F值< 0.01,则表示该指标极显著,用**表示;R2=0.7590,RAdj2=0.9584。
    Note: When Probe>F is below 0.05, the corresponding index is labeled with “*” to indicate significant difference. When Probe>F is below 0.01,the corresponding index is labeled with “**” to indicate extremely significant difference. R2=0.7590,RAdj2=0.9584.
    下载: 导出CSV

    表  4  纤维样品持水力、持油力和膨胀度比较

    Table  4.   Water and oil holding capacities and expansion of fiber samples

    样品
    Samples
    持水力
    Water binding capacity/(g·g-1)
    持油力
    Oil binding capacity/(g·g-1)
    膨胀度
    Swelling capacity/(mL·g-1)
    酶解前纤维Nativefiber 7.31± 0.12b 0.91± 0.09b 2.8 ± 0.11b
    酶解后纤维Modified fiber 9.51 ± 0.19a 1.97 ± 0.21a 4.6 ± 0.14a
    下载: 导出CSV
  • [1] 刘杰.雷竹笋复合饮料的研发与生产工艺研究[D].长沙: 中南林业科技大学, 2014.

    LIU J. The content and determination of dietary fiber from peel husk[D]. Changsha: Central South University of Forestry and Technology, 2014.(in Chinese)
    [2] CHEICKNA D, HUI Z. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran[J]. J Food Sci Technol, 2014, 51(12): 3878-3885. doi: 10.1007/s13197-013-0925-y
    [3] 张茜, 杨莉, 刘毅.果皮果壳膳食纤维含量及性能测定[J].江西化工, 2014(4): 116-118. doi: 10.3969/j.issn.1008-3103.2014.04.038

    ZHANG Q, YANG L, LIU Y. The content and determination of dietary fiber from peel husk[J]. Jiangxi Chemical Industry, 2014(4): 116-118.(in Chinese) doi: 10.3969/j.issn.1008-3103.2014.04.038
    [4] 牛飞飞.果蔬膳食纤维粒径对其理化性质及加工性能的影响[D].无锡: 江南大学, 2016.

    NIU F F. The effect of particle size of dietary fiber on its physicochemical and processing properties[D]. Wuxi: Jiangnan University, 2016.(in Chinese)
    [5] 宋玉.竹笋膳食纤维的改性及在中式香肠中的应用研究[D].贵州: 贵州大学, 2018.

    SONG Y. Modification of bamboo shoots dietary fiber and its application in Chinese sausages[D]. Guizhou: Guizhou University: 2018.(in Chinese)
    [6] 刘玉凌.物理改性方竹笋膳食纤维理化性能及结构的研究[D].重庆: 西南大学, 2016.

    LIU Y L.Study on the physicochemical properties and structure of Chimonobambusa dietary fiber modified by physical ways[D]. Chongqing: Southwest University, 2016.(in Chinese)
    [7] 陆红佳, 袁进文, 游玉明.粒度大小对姜渣膳食纤维功能特性的影响[J].中国调味品, 2018, 43(10): 37-42. doi: 10.3969/j.issn.1000-9973.2018.10.008

    LU H J, YUAN J W, YOU Y M. Effect of particle size on the functional characteristis of dietary fiber from ginger slag[J]. China Condiment, 2018, 43(10): 37-42.(in Chinese) doi: 10.3969/j.issn.1000-9973.2018.10.008
    [8] 张汪, 时超, 褚莹莹, 等.米糠膳食纤维提取工艺的研究进展[J].食品工程, 2016(4): 1-3. doi: 10.3969/j.issn.1673-6044.2016.04.001

    ZHANG W, SHI C, CHU Y Y, et al. Research of rice bran dietary fiber extraction process[J]. Food Engineering, 2016(4): 1-3.(in Chinese) doi: 10.3969/j.issn.1673-6044.2016.04.001
    [9] 齐惠.挤压-酶法联合制备豆渣水溶性膳食纤维及其性质研究[D].哈尔滨: 东北农业大学, 2016.

    QI H. Preparation of soluble dietary fiber from soybean residues by extrusion-enzymatic technology and its properties[D]. Haerbin: Northeast Agriculture University, 2016.(in Chinese)
    [10] 林良美.笋壳活性膳食纤维的提取及降糖降脂功能特性研究[D].福州: 福建农林大学, 2016.

    LIN L M. Extraction, hypoglycemic and hypolipidemic effects of bioactive dietary fiber from bamboo shoot shell[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.(in Chinese)
    [11] 陈琼玲.响应面优化苣荬菜中水溶性膳食纤维提取及其理化性质[J].食品工业, 2017(10): 93-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201710024

    CHEN Q L. Optimazation of Extraction Process of Soluble Dietary Fiber from Sonchus arvensis L. by Response Surface Methodology and Its Properties[J]. The Food Industry, 2017(10): 93-97.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201710024
    [12] 方吉雷, 葛青, 毛建卫, 等.超微粉碎对竹粉膳食纤维功能特性的影响[J].食品工业科技, 2017, 38(17): 50-55. http://d.old.wanfangdata.com.cn/Periodical/spgykj201717010

    FANG J L, GE Q, MAO J W, et al. Effect of superfine pulverizing on properties of bamboo powder dietary fiber[J]. Science and Technology of Food Industry, 2017, 38(17): 50-55.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/spgykj201717010
    [13] 刘欢, 顾邢伟, 王雪, 等.玉米秸秆超微粉碎与醇解液化研究[J].农业机械学报, 2015, 46(11): 214-20. doi: 10.6041/j.issn.1000-1298.2015.11.029

    LIU H, GU X W, WANG X, et al. Ultrafine grinding and alcolhol liquefaction for corn stover[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 214-20.(in Chinese) doi: 10.6041/j.issn.1000-1298.2015.11.029
    [14] 张馨月, 刘海棠, 刘忠, 等.咖啡渣膳食纤维超高压改性吸水润胀性能的研究[J].食品工业, 2018(3): 134-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803034

    ZHANG X Y, LIU H T, LIU Z, et al. Study on the swelling properties of coffee residue dietary fiber by ultra-high pressure modification[J]. The Food Industry, 2018(3): 134-137.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803034
    [15] REQUENA M C, GONZ LEZ C N A, BARRAG N L A P, et al. Functional and physico-chemical properties of six desert-sources of dietary fiber[J]. Food Bioscience, 2016, 16:26-31. doi: 10.1016/j.fbio.2016.08.001
    [16] CHEN J, GAO D, YANG L, et al. Effect of microfluidization process on the functional properties of insoluble dietary fiber[J]. Food Research International, 2013, 54(2): 1821-1827. doi: 10.1016/j.foodres.2013.09.025
    [17] 石亚中, 方娇龙, 钱时权, 等.响应曲面法优化纤维素酶酶解提取工艺[J].食品科学, 2013, 34(4): 75-79. http://d.old.wanfangdata.com.cn/Periodical/spkx201304016

    SHI Y Z, FANG J L, QIAN S Q, et al. Response surface methodology for the optimization of enzymatic extraction of resveratrol grape pomace with cellulase[J]Food Science, 2013, 34(4): 75-79.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/spkx201304016
    [18] ÇINAR Ï. Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids[J]. Process Biochemistry, 2005, 40(2): 945-949. doi: 10.1016/j.procbio.2004.02.022
    [19] 赵能, 罗安伟, 姚婕, 等.响应面试验优化胡萝卜浆复合酶解工艺[J].食品科学, 2015, 36(16): 83-87. doi: 10.7506/spkx1002-6630-201516015

    ZHAO N, LUO A W, YAO J, et al. Optimization of enzymatic hydrolysis of Carrot Pulp with cellulase and pectinase for increased juice yield by response surface methodology[J]. Food Science, 2015, 36(16): 83-87.(in Chinese) doi: 10.7506/spkx1002-6630-201516015
    [20] 陈开霜, 宋艳, 魏熠, 等.响应面法优化纤维素酶水解南瓜工艺的研究[J].食品工业, 2017(9): 66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201709017

    CHEN K S, SONG Y, WEI Y, et al. Optimization of cellulase hydrolysis of Pumpkin by response surface methodology[J]. The Food Industry, 2017(9): 66-70.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201709017
    [21] 肖南, 林敏欣.响应面分析法优化纤维素酶提取陈皮中橙皮苷工艺的研究[J].农产品加工, 2016(16): 18-23. http://d.old.wanfangdata.com.cn/Periodical/ncpjg-cxb201608005

    XIAO N, LIN M X. Study on Cellulose Enzyme-assisted Extraction of Hesperidin from Pericarpium Citri Reticulatae with Response Surface Analysis[J]. Farm Products Processing, 2016(16): 18-23.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ncpjg-cxb201608005
    [22] 卢忠英, 王云洋, 鲁道旺, 等.响应面与酶法优化拐枣膳食纤维的提取工艺[J].食品研究与开发, 2017, 38(21): 24-28. doi: 10.3969/j.issn.1005-6521.2017.21.006

    LU Z Y, WANG Y Y, LU D W, et al. Optimization extraction of dietary fiber from hovenia dulcis by enzymolysis and response surface methodology[J]. Food Research and Development, 2017, 38(21): 24-28.(in Chinese) doi: 10.3969/j.issn.1005-6521.2017.21.006
    [23] 师静, 林占熺, 林冬梅, 等.巨菌草纤维素的酶解条件[J].草业科学, 2014, 31(4): 760-765. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201404028

    SHI J, LIN Z X, LIN D M, et al. Enzymolysis conditions of Pennisetumsp cellulose[J]. Pratacultural Science, 2014, 31(4): 760-765.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/caoyekx201404028
    [24] 张建安, 闫科.木素对纤维素酶解的影响及纤维素酶解[J].化学工程, 2000, 28(1): 39-41. http://d.old.wanfangdata.com.cn/Periodical/hxgc200001009

    ZHANG J A, YAN K. Effects of lignin on cellulolysis and cellulolysis[J]. Chemical Engineering(China), 2000, 28(1): 39-41.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hxgc200001009
    [25] 黄冬云, 钱海峰, 苑华宁, 等.木聚糖酶制取米糠膳食纤维的功能性质[J].食品与发酵工业, 2013, 39(12): 30-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyfx201312006

    HUANG D Y, QIAN H F, YUAN H N, et al. Study on xylanase enzyme modified the rice bran dietary fibre and its functional properties[J]. Food and Fermentation Industries, 2013, 39(12): 30-34.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyfx201312006
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  165
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 修回日期:  2019-01-14
  • 刊出日期:  2019-03-28

目录

    /

    返回文章
    返回