• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主成分分析的刺葡萄实生单株苗期性状综合评价

许红叶 李婷 臧运祥 徐凯 高永彬 郑伟尉

许红叶, 李婷, 臧运祥, 徐凯, 高永彬, 郑伟尉. 基于主成分分析的刺葡萄实生单株苗期性状综合评价[J]. 福建农业学报, 2019, 34(7): 764-774. doi: 10.19303/j.issn.1008-0384.2019.07.003
引用本文: 许红叶, 李婷, 臧运祥, 徐凯, 高永彬, 郑伟尉. 基于主成分分析的刺葡萄实生单株苗期性状综合评价[J]. 福建农业学报, 2019, 34(7): 764-774. doi: 10.19303/j.issn.1008-0384.2019.07.003
XU Hong-ye, LI Ting, ZANG Yun-xiang, XU Kai, GAO Yong-bin, ZHENG Wei-wei. Characterization of Seed-derived Vitis davidii Seedings by Principal Component Analysis[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 764-774. doi: 10.19303/j.issn.1008-0384.2019.07.003
Citation: XU Hong-ye, LI Ting, ZANG Yun-xiang, XU Kai, GAO Yong-bin, ZHENG Wei-wei. Characterization of Seed-derived Vitis davidii Seedings by Principal Component Analysis[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 764-774. doi: 10.19303/j.issn.1008-0384.2019.07.003

基于主成分分析的刺葡萄实生单株苗期性状综合评价

doi: 10.19303/j.issn.1008-0384.2019.07.003
基金项目: 

浙江省科技厅项目——十三五果品新品种选育重大专项 2016C02052-6

浙江省基础公益研究计划项目 LGN19C150008

详细信息
    作者简介:

    许红叶(1995-), 女, 硕士, 研究方向:园艺植物栽培生理(E-mail:1712832437@qq.com)

    通讯作者:

    郑伟尉(1980-), 女, 博士, 副教授, 研究方向:园艺植物资源利用与创新(E-mail:zhengww@zafu.edu.cn)

  • 中图分类号: S663.1

Characterization of Seed-derived Vitis davidii Seedings by Principal Component Analysis

  • 摘要:   目的  建立一套适合刺葡萄实生单株苗期性状的评价方法。  方法  测定了刺葡萄实生单株干径、新梢长度、叶片叶绿素含量、叶面积、叶片干鲜重、叶片叶形结构参数等16个主要性状,并应用主成分分析法对其进行综合评价。  结果  刺葡萄实生单株主要生长性状均出现较大变异,尤其是新梢长度、叶片叶绿素含量、干径等变异较大。选取方差累积贡献率为86.254%的前6个主成分来评价刺葡萄实生单株,决定第1主成分的是干径、新梢长度、叶绿素含量、叶面积、叶片鲜重、叶片干重;决定第2主成分的是中脉长、上侧脉长、下侧脉长、叶柄脉长;决定第3主成分的是叶宽和上中侧脉夹角。  结论  以6个主成分及单个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重,构建刺葡萄实生单株苗期性状的综合评价模型F=0.38F1+0.24F2+0.12F3+0.10F4+0.09F5+0.06F6,综合得分排名前两位的单株分别为S4和S35。
  • 图  1  叶片叶形结构参数

    Figure  1.  Schematic components for describing blade structure of seedlings

    图  2  刺葡萄实生单株苗期干径比较

    Figure  2.  Stem girth of V. davidii seedlings

    图  3  刺葡萄实生单株苗期新梢长度比较

    Figure  3.  Shoot length of V. davidii seedlings

    图  4  刺葡萄实生单株苗期叶片叶绿素含量比较

    Figure  4.  Leaf chlorophyll content of V. davidii seedlings

    图  5  刺葡萄实生单株苗期叶片鲜重、干重比较

    Figure  5.  Dry and fresh weigh of V. davidii seedling leaves

    图  6  刺葡萄实生单株苗期叶面积比较

    Figure  6.  Leaf area of V. davidii seedlings

    图  7  刺葡萄实生单株苗期叶脉长比较

    Figure  7.  Vein length of V. davidii seedlings

    图  8  刺葡萄苗期叶宽比较

    Figure  8.  Leaf width of V. davidii seedlings

    图  9  刺葡萄实生单株苗期上裂刻基部距叶脉基点长、下裂刻基部距叶脉基点长比较

    Figure  9.  Distance between upper fissure or inferior fissure base and vein base on leaves of V. davidii seedlings

    图  10  刺葡萄苗期叶脉夹角比较

    Figure  10.  Angle between veins on leaves of V. davidii seedlings

    表  1  刺葡萄苗期性状的特征值和累计方差贡献率

    Table  1.   Eigenvalues and accumulative contribution of various characteristics of V. davidii seedlings

    主成分
    The principal components
    特征值
    The eigenvalue
    方差贡献率
    Variance contribution rate/%
    累计方差贡献率
    Cumulative variance contribution rate/%
    1 5.177 32.359 32.359
    2 3.265 20.409 52.768
    3 1.614 10.085 62.853
    4 1.430 8.937 71.790
    5 1.308 8.176 79.966
    6 1.006 6.288 86.254
    下载: 导出CSV

    表  2  主成分在各苗期性状指标上的因子荷载矩阵

    Table  2.   Rotated component matrix of principal components

    性状
    Characters
    主成分The principal components
    1 2 3 4 5 6
    干径Stem diameter 0.930 0.057 0.184 0.110 -0.028 0.253
    新梢长度New shoots length 0.890 -0.219 0.272 0.223 0.505 -0.114
    叶绿素含量Chlorophyll content 0.888 0.189 0.409 -0.091 -0.624 0.191
    叶片鲜重Leaf fresh weight 0.864 -0.096 -0.133 -0.008 -0.105 0.143
    叶片干重Leaf dry weight 0.663 0.064 -0.233 -0.015 0.385 0.268
    叶面积Leaf area 0.568 -0.074 0.275 -0.089 -0.283 -0.619
    中脉长Midrib length 0.089 0.905 0.150 -0.089 -0.090 -0.080
    上侧脉长Upper lateral vein length 0.077 0.860 0.060 -0.125 0.071 0.026
    下侧脉长Lower lateral vein length 0.338 0.800 0.001 -0.145 0.146 0.087
    叶柄脉长Downmost vein length 0.285 0.559 -0.100 -0.175 0.087 0.013
    叶宽Leaf width 0.249 -0.185 0.661 0.132 -0.102 -0.147
    上裂刻基部距叶脉基点长Distance from upper fissure base to point of leaf vein 0.265 -0.215 -0.299 0.758 -0.094 -0.060
    下裂刻基部距叶脉基点长Distance from inferior fissure to base point of leaf vein 0.319 -0.161 -0.343 0.646 -0.100 -0.054
    上中侧脉夹角Angle between upper lateral and midrib veins 0.092 -0.106 0.690 -0.099 0.100 -0.225
    上下侧脉夹角Angle between upper and lower later 0.061 0.540 -0.163 -0.142 0.284 0.554
    下侧脉与叶柄脉夹角Angle between lower lateral veins and downmost veins -0.257 0.488 -0.080 -0.486 0.511 0.130
    下载: 导出CSV

    表  3  刺葡萄苗期性状评价结果

    Table  3.   Evaluation on characteristics of V. davidiii seedings

    编号
    Serial number
    F1 F2 F3 F4 F5 F6 F 排名
    Ranking
    S1 -0.17 2.69 2.69 -0.91 -1.39 0.75 0.74 13
    S2 -6.93 0.26 0.53 -0.88 2.15 -0.37 -2.43 30
    S3 -0.83 -1.76 2.15 0.91 1.05 1.73 -0.17 19
    S4 14.42 4.13 -2.11 0.39 -0.76 1.44 6.29 1
    S5 -5.06 8.44 1.35 0.26 0.54 -0.70 0.29 16
    S6 -5.80 -0.96 -2.29 -0.62 -0.38 -1.05 -2.88 32
    S7 5.20 -4.11 1.91 -0.80 -1.25 -1.20 0.94 10
    S8 -2.75 2.01 -0.19 -0.05 0.63 0.44 -0.50 23
    S9 -2.91 -1.91 -1.33 -0.07 -1.58 1.73 -1.75 28
    S10 -2.08 0.24 1.35 -1.47 -0.82 0.53 -0.76 25
    S11 2.40 1.45 0.26 -0.30 -1.93 -2.38 0.92 11
    S12 0.52 -10.54 0.25 1.37 -0.55 -0.23 -2.23 29
    S13 5.27 -1.18 0.17 0.41 -0.78 -1.12 1.63 6
    S14 5.18 0.85 -0.66 0.01 0.29 1.93 2.26 5
    S15 -8.74 -3.52 -1.29 -1.64 0.29 -0.65 -4.51 35
    S16 -6.12 -1.22 -1.85 3.05 -1.42 0.84 -2.61 31
    S17 2.94 -5.68 0.55 -0.48 -1.43 -0.13 -0.36 21
    S18 0.83 -0.11 0.34 1.31 -0.71 0.17 0.41 15
    S19 0.76 5.52 -0.90 0.35 -1.00 -0.55 1.41 8
    S20 -1.87 0.38 1.54 -1.32 -0.42 1.56 -0.50 22
    S21 -1.03 1.34 -1.30 -1.48 1.59 -0.67 -0.28 20
    S22 4.33 0.96 4.05 4.05 1.63 -1.16 2.83 3
    S23 5.32 2.13 1.11 -1.24 -0.22 -1.30 2.43 4
    S24 -2.38 3.87 -0.24 0.52 0.38 0.11 0.09 18
    S25 -3.53 0.98 -0.19 -2.96 -0.43 0.19 -1.45 27
    S26 2.57 1.05 -0.45 -0.66 -2.44 -0.67 0.84 12
    S27 2.00 0.76 1.32 -1.58 0.93 1.19 1.11 9
    S28 5.91 -2.45 -1.21 -1.69 2.86 -1.02 1.53 7
    S29 2.65 -0.94 -0.67 -0.14 -0.86 0.51 0.64 14
    S30 -8.88 0.09 1.30 1.72 -0.42 -0.03 -3.07 34
    S31 -7.73 -1.04 1.33 0.14 0.73 0.44 -2.92 33
    S32 -1.05 -2.64 -0.57 -0.08 2.17 -0.14 -0.92 26
    S33 -1.95 1.14 -3.77 1.41 0.46 -0.26 -0.76 24
    S34 -0.35 1.50 -2.54 2.41 0.51 -0.48 0.18 17
    S35 9.88 -1.71 -0.66 0.05 2.57 0.55 3.54 2
    下载: 导出CSV
  • [1] 王美军, 黄乐, 蒋建雄, 等.刺葡萄花粉形态观察[J].果树学报, 2014, 31(4):610-616. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201404012

    WANG M J, HUANG L, JIANG J X, et al. Observation on pollen morphology of thorn grape[J]. Journal of Fruit Trees, 2014, 31(4):610-616.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201404012
    [2] ARTLIP T S, WISNIEWSKI M E, NORELLI J L. Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth[J]. Environmental and Experimental Botany, 2013, 106:79-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=931b92be070023300fa29b6e2db9bc54
    [3] NUNES S, SANTOS C, MOUTINHO-PEREIRA J, et al. Physiological characterization and true-to-typeness evaluation of in vitro and ex vitro seedlings of Pinus elliottii:A contribution to breeding programs[J]. Plant Physiology and Biochemistry, 2016, 107:222-227. doi: 10.1016/j.plaphy.2016.05.039
    [4] DARBYSHIRE R, FARRERA I, MARTINEZ-LVSCHER J, et al. A global evaluation of apple flowering phenology models for climate adaptation[J]. Agricultural and Forest Meteorology, 2017, 240-241:67-77. doi: 10.1016/j.agrformet.2017.03.021
    [5] 徐丰, 石雪晖, 杨国顺, 等.湖南不同类型刺葡萄植物学性状研究[J].中外葡萄与葡萄酒, 2010(2):8-12. http://d.old.wanfangdata.com.cn/Periodical/zwptyptj201003002

    XU F, SHI X H, YANG G S, et al. Study on botanical characters of different types of thorn grape in hunan[J]. Chinese and Foreign Grapes and Wine, 2010(2):8-12.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwptyptj201003002
    [6] 李若兰, 熊闻, 鞠延轮, 等.野生刺葡萄叶片度量性状研究[J].西北林学院学报2017, 32(1):172-178, 217. doi: 10.3969/j.issn.1001-7461.2017.01.27

    LI R L, XIONG W, JU Y L, et al. Study on leaf metric characters of wild thorn grape[J]. Journal of Northwest Forestry College, 2017, 32(1):172-178, 217.(in Chinese) doi: 10.3969/j.issn.1001-7461.2017.01.27
    [7] 王美军, 黄乐, 刘昆玉, 等.刺葡萄叶与花和果实及种子的表型性状研究[J].湖南农业大学学报(自然科学版), 2016, 42(5):489-495. http://d.old.wanfangdata.com.cn/Periodical/hunannydx201605005

    WANG M J, HUANG L, LIU K Y, et al. Studies on phenotypic characters of leaves and flowers, fruits and seeds of grape thorn[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2016, 42(5):489-495.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hunannydx201605005
    [8] 宋军阳, 于大永, 王西平.葡萄叶片数量化研究[J].西北农林科技大学学报(自然科学版), 2015, 43(2):142-148. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201502021

    SONG J Y, YU D Y, WANG X P. Quantitative study on grape leaves[J]. Journal of Northwest Agricultural and Forestry University (Natural Science Edition), 2015, 43(2):142-148.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201502021
    [9] WU J F, ZHANG C Y, CHEN J Z, et al. Morphological diversity within litchi (Litchi chinensisSonn.) based on leaf and branch traits[J]. Scientia Horticulturae, 2016, 207:21-27. doi: 10.1016/j.scienta.2016.05.004
    [10] CHASHNIDELA B, HAJNAJARI H. Relationships of morphological traits and ripening time during juvenile phase in apple[J]. Scientia Horticulturae, 2012, 144:29-35. doi: 10.1016/j.scienta.2012.06.034
    [11] MLWAT A, MAGUIRE K. Canopy Management and Dry Matter of 'Hayward' Kiwifruit[J]. Acta Horticulturae, 2007, 753(753):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cc821d27913a2df2cf6bb36db1cd6ab
    [12] 高建昌, 郭广君, 国艳梅, 等.平台扫描仪结合ImageJ软件测定番茄叶面积[J].中国蔬菜, 2011(2):73-77. http://d.old.wanfangdata.com.cn/Periodical/zgsc201101013

    GAO J C, GUO G J, GUO Y M, et al. The platform scanner and ImageJ software were used to measure tomato leaf area[J]. Chinese Vegetables, 2011(2):73-77.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgsc201101013
    [13] GALET P. Précis d'A mpélographie Pratique[M]. Charles DEHAN, Monptellier France, 1985, 130.
    [14] GOMES M P, MANAC'H S G L, MACCARIO S, et al. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants[J]. Pesticide Biochemistry and Physiology, 2016, 130:65-70. doi: 10.1016/j.pestbp.2015.11.010
    [15] 周香艳, 杨江伟, 唐勋, 等. amiRNA技术沉默C-3氧化酶编码基因StCPD对马铃薯抗旱性的影响[J].作物学报, 2018, 44(4):512-521. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804006

    ZHOU X Y, YANG J W, TANG X, et al. Effects of amiRNA silencing StCPD gene encoding c-3 oxidase on drought resistance of potato[J]. Journal of Crops, 2018, 44(4):512-521.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zuowxb201804006
    [16] LEROY C, SAINT-ANDRE L, AUCLAIR D. Practical methods for nondestructive measurement of tree leaf area[J]. Agro Forest Systems, 2007, 71(2):99-108.
    [17] 张万红.基于图像分割的苹果叶片几何参数计算[J].中国农业大学学报, 2018, 23(8):101-108. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201808011

    ZHANG W H. Geometric parameter calculation of apple leaves based on image segmentation[J]. Journal of China Agricultural University, 2018, 23(8):101-108.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201808011
    [18] 王聚辉, 程子祥, 修文雯, 等.玉米茎叶夹角与根系入土角度相关性研究[J].华北农学报, 2015, 30(S1):173-178. doi: 10.7668/hbnxb.2015.S1.031

    WANG J H, CHENG Z X, XIU W W, et al. Study on the correlation between maize stem and leaf Angle and root penetration Angle[J]. North China Agricultural Journal, 2015, 30(S1):173-178.(in Chinese) doi: 10.7668/hbnxb.2015.S1.031
    [19] 陈秀娟, 糜林, 陈卫平, 等.种苗地径对草莓生长发育及产量和品质的影响[J].南京农业大学学报, 2011, 34(4):129-132.

    CHEN X J, MI L, CHEN W P, et al. Effect of seedling diameter on growth, yield and quality of strawberry[J]. Journal of Nanjing Agricultural University, 2011, 34(4):129-132.(in Chinese)
    [20] 温维亮, 王勇健, 李超, 等.葡萄树形态结构与生长发育过程数字化表达方法研究[J].中国农业科学, 2015, 48(11):2143-2151. doi: 10.3864/j.issn.0578-1752.2015.11.006

    WEN W L, WANG Y J, LI C, et al. Study on digital expression methods of grape tree morphological structure and growth process[J]. Chinese Agricultural Science, 2015, 48(11):2143-2151.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.11.006
    [21] WANG Y, JIN G, SHI B, et al. Empirical models for measuring the leaf area and leaf mass across growing periods in broadleaf species with two life histories[J]. Ecological Indicators, 2019, 102:289-301. doi: 10.1016/j.ecolind.2019.02.041
    [22] 曾小平, 姚睿, 蔡锡安, 等.底泥养分富集条件下11种水生植物的光合氮利用效率[J].生态学报, 2018, 38(14):4923-4931. http://d.old.wanfangdata.com.cn/Periodical/stxb201814001

    ZENG X P, YAO R, CAI X A, et al. Photosynthetic nitrogen use efficiency of 11 aquatic plants under nutrient enrichment of sediment[J]. Acta ecologica Sinica, 2018, 38(14):4923-4931.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stxb201814001
    [23] 魏书精, 罗碧珍, 魏书威, 等.森林生态系统土壤呼吸测定方法研究进展[J].生态环境学报, 2014, 23(3):504-514. doi: 10.3969/j.issn.1674-5906.2014.03.021

    WEI S J, LUO B Z, WEI S W, et al. Advances in soil respiration assay for forest ecosystems[J]. Journal of Ecological Environment, 2014, 23(3):504-514.(in Chinese) doi: 10.3969/j.issn.1674-5906.2014.03.021
    [24] 仇占南, 张茹阳, 彭明朗, 等.北京野生软枣猕猴桃果实品质综合评价体系[J].中国农业大学学报, 2017, 22(2):45-53. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201702005

    QIU Z N, ZHANG R Y, PENG M L, et al. Comprehensive quality evaluation system of Beijing wild jujube kiwi fruit[J]. Journal of China Agricultural University, 2017, 22(2):45-53.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201702005
    [25] 李伟, 郜海燕, 陈杭君, 等.基于主成分分析的不同品种杨梅果实综合品质评价[J].中国食品学报, 2017, 17(6):161-171. http://d.old.wanfangdata.com.cn/Periodical/zgspxb201706022

    LI W, HAO H Y, CHEN H J, et al. Comprehensive quality evaluation of waxberry fruits of different varieties based on principal component analysis[J]. Chinese Food Journal, 2017, 17(6):161-171.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgspxb201706022
    [26] LI J, LUO W, WANG Z, et al. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method[J]. Postharvest Biology and Technology, 2019, 149:235-246. doi: 10.1016/j.postharvbio.2018.12.007
    [27] COELHO I, MATOS A S, TEIXEIRA R, et al. Combining multielement analysis and chemometrics to trace the geographical origin of Rocha pear[J].Journal of Food Composition and Analysis, 2019, 77:1-8. doi: 10.1016/j.jfca.2018.12.005
    [28] WANG Y, HU Y, CHEN B, et al. Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks[J]. Journal of Integrative Agriculture, 2018, 17(4):857-866. doi: 10.1016/S2095-3119(17)61760-X
    [29] KALAYCLOǦLU Z, KAYGUSUZ H, DÖKER S, et al. Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities[J]. LWT-Food Science and Technology, 2017, 84:402-408. doi: 10.1016/j.lwt.2017.06.003
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1450
  • HTML全文浏览量:  406
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-12
  • 修回日期:  2019-05-14
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回