• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辣椒脉斑驳病毒湖南分离物全基因组序列测定及分子特征

谭汝晴 罗香文 卜姗 张宇 张松柏 张德咏 刘勇

谭汝晴,罗香文,卜姗,等. 辣椒脉斑驳病毒湖南分离物全基因组序列测定及分子特征 [J]. 福建农业学报,2020,35(2):187−191 doi: 10.19303/j.issn.1008-0384.2020.02.009
引用本文: 谭汝晴,罗香文,卜姗,等. 辣椒脉斑驳病毒湖南分离物全基因组序列测定及分子特征 [J]. 福建农业学报,2020,35(2):187−191 doi: 10.19303/j.issn.1008-0384.2020.02.009
TAN R Q, LUO X W, BU S, et al. Full Genomic Sequence and Molecular Characteristics of Hunan Isolate of Chilliveinal mottle Virus [J]. Fujian Journal of Agricultural Sciences,2020,35(2):187−191 doi: 10.19303/j.issn.1008-0384.2020.02.009
Citation: TAN R Q, LUO X W, BU S, et al. Full Genomic Sequence and Molecular Characteristics of Hunan Isolate of Chilliveinal mottle Virus [J]. Fujian Journal of Agricultural Sciences,2020,35(2):187−191 doi: 10.19303/j.issn.1008-0384.2020.02.009

辣椒脉斑驳病毒湖南分离物全基因组序列测定及分子特征

doi: 10.19303/j.issn.1008-0384.2020.02.009
基金项目: 国家自然科学基金项目(31772133、31571981);国家大宗蔬菜产业体系建设专项(CARS-23-D-02);湖南省自然科学基金项目(2018JJ2234)
详细信息
    作者简介:

    谭汝晴(1994−),女,硕士研究生,主要从事植物病毒致病分子机制研究(E-mail:451704363@qq.com

    通讯作者:

    刘勇(1966−),博士,研究员,主要从事蔬菜病害致害机制及绿色综合防控技术研究(E-mail:liuyong@hunaas.cn

  • 中图分类号: S 436.418.1+2

Full Genomic Sequence and Molecular Characteristics of Hunan Isolate of Chilliveinal mottle Virus

  • 摘要:   目的  辣椒脉斑驳病毒(Chilli veinal mottle virus,ChiVMV)是东南亚茄科作物主产地主要病毒种类之一,严重危害辣椒等茄科作物的生产。测定ChiVMV的全基因组序列,分析其分子特征,可以明确该病毒的适应性进化以及对我国辣椒等茄科作物的潜在威胁提供科学基础。  方法  以湖南疑似感染ChiVMV辣椒为样本,采用small RNA高通量测序结合RT-PCR测定病毒全基因组序列,利用Mega、RDP及DnaSP等生物学软件分析其分子特征。  结果  ChiVMV湖南分离物全长基因组序列为9 704 nt(不包含3'-A尾),与其他分离物的序列同源性为 84% ~ 94 %。系统发育分析表明,我国的ChiVMV聚类为一个亚簇,与其他国家和地区分离物不存在重组事件。基因的替换指数R=3.29,替换碱基类型主要是 C/T替换。  结论  碱基替换突变可能是ChiVMV湖南分离物适应性进化的主要因素。
  • 图  1  基于ChiVMV全基因组序列的系统发育分析

    注:引导值超过60%。使用CLUSTAL W程序(mega 5.0)生成树状图。

    Figure  1.  Phylogenetic tree constructed using full length sequences of genes from 10 ChiVMVs

    Note:Bootstrap values exceeding 60% are shown. Dendrogram was generated using CLUSTAL W program (mega 5.0).

    图  2  基于ChiVMVCP基因序列的系统发育分析

    注:使用CLUSTAL W程序(mega 5.0)生成树状图。

    Figure  2.  Phylogenetic tree constructed using CP genes sequences of ChiVMV isolates

    Note: Dendrogram was generated using CLUSTAL W program (mega 5.0).

    图  3  基于ChiVMV全基因组序列的重组分析

    Figure  3.  Recombinant events based on full sequences of genes from ChiVMVs

    表  1  ChiVMV RT-PCR特异性引物

    Table  1.   Primers for amplifying genomic sequence of ChiVMV gene

    引物编号
    Primers
    序列(5’-3’)
    Sequence (5’-3’)
    CV1F GTATTGCCTATGCTAAGGACA
    CV1R TCGCCACTATTGAATAGCTTG
    CV2F TCTTTATCTCAGCACACATCG
    CV2R TCGCCACTATTGAATAGCTTG
    CV3F CCCAAGCACATTGTTAAGGGA
    CV8F TAAAGTGCAATTCTTAATCGG
    CV8R AAGATAATGTAGTGCATAGCC
    CV9F CTGTCAAGTTATAAGAAGCCTA
    CV9R ACTAAACTCTTTAAGCCGTTG
    CV12F TCATTCCATCCTACAAGGGAC
    CV12R TCGGGCTAGTTCTAATAAGCAA
    下载: 导出CSV

    表  2  ChiVMV全基因组序列碱基替换指数

    Table  2.   Maximum composite likelihood estimation of nucleotide substitution pattern

    碱基 BaseATCG
    A2.591.815.44
    T3.0717.982.21
    C3.0725.842.21
    G21.42.591.8
    下载: 导出CSV
  • [1] ADAMS M J, ANTONIW J F, FAUQUET C M. Molecular criteria for genus and species discrimination within the family Potyviridae [J]. Archives of Virology, 2005, 150(3): 459−479. doi: 10.1007/s00705-004-0440-6
    [2] ONG C A, TING W P. A review of plant virus diseases in peninsular Malaysia, symposium on virus diseases of topical crops [J]. Tropical Agriculture Researches Series, 1977, 10: 155−164.
    [3] RAVI K S, JOSEPH J, NAGARAJU N, et al. Characterization of a pepper vein banding virus from chili pepper in India [J]. Plant Disease, 1997, 81(6): 673−676. doi: 10.1094/PDIS.1997.81.6.673
    [4] WANG J, LIU Z, NIU S, et al. Natural Occurrence of Chilli veinal mottle virus on Capsicum chinense in China [J]. Plant Disease, 2006, 90(3): 377.
    [5] NONO-WOMDIM R, SWAI I S, CHADHA M L, et al. Occurrence of Chilli veinal mottle virus in Solanum aethiopicum in Tanzania [J]. Plant Disease, 2001, 85(7): 801.
    [6] TAN G T, SHI L L, SHANG H L, et al. Diagnosis of viruses in chilli peper in Shanxi Province [J]. Journal of China Capsicum, 2003, 3: 32−33.
    [7] 刘健, 张德咏, 张松柏, 等. 湖南和福建辣椒上辣椒脉斑驳病毒的检测及系统发育分析 [J]. 江苏农业科学, 2016, 44(5):184−185.

    LIU J, ZHANG D Y, ZHANG S B, et al. Detection and sequence phylogenetic analysis of Chilli veinal mottle virus from Hunan and Fujian provinces [J]. Jiangsu Agricultural Sciences, 2016, 44(5): 184−185.(in Chinese)
    [8] 王莉爽, 陈小均, 何海永, 等. 贵州辣椒脉斑驳病毒的检测及株系分化研究 [J]. 南方农业学报, 2017, 48(7):1220−1224. doi: 10.3969/j.issn.2095-1191.2017.07.15

    WANG L S, CHEN X J, HE H Y, et al. Detection of Chilli veinal mottle virus from Guizhou and its strain differentiation [J]. Journal of Southern Agriculture, 2017, 48(7): 1220−1224.(in Chinese) doi: 10.3969/j.issn.2095-1191.2017.07.15
    [9] 汤亚飞, 裴凡, 于琳, 等. 侵染广东辣椒的辣椒脉斑驳病毒的分子特征 [J]. 园艺学报, 2018, 45(11):2209−2216.

    TANG Y F, PEI F, YU L, et al. Molecular characterization of chilli veinal mottle virus infecting pepper in Guangdong Province [J]. Acta Horticulturae Sinica, 2018, 45(11): 2209−2216.(in Chinese)
    [10] TSAI W S, HUANG Y C, ZHANG D Y, et al. Molecular characterization of the CP gene and 3'UTR of Chilli veinal mottle virus from South and Southeast Asia [J]. Plant Pathology, 2008, 57(3): 408−416. doi: 10.1111/j.1365-3059.2007.01780.x
    [11] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731−2739. doi: 10.1093/molbev/msr121
    [12] MARTIN D P, MURRELL B, GOLDEN M, et al. RDP4: Detection and analysis of recombination patterns in virus genomes [J]. Virus Evolution, 2015, 1(1): vev003. doi: 10.1093/ve/vev003
    [13] PADIDAM M, SAWYER S, FAUQUET C M. Possible emergence of new geminiviruses by frequent recombination [J]. Virology, 1999, 265(2): 218−225. doi: 10.1006/viro.1999.0056
    [14] SMITH J. Analyzing the mosaic structure of genes [J]. Journal of Molecular Evolution, 1992, 34(2): 126−129. doi: 10.1007/bf00182389
    [15] POSADA D, CRANDALL K A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 13757−13762. doi: 10.1073/pnas.241370698
    [16] GIBBS M J, ARMSTRONG J S, GIBBS A J. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences [J]. Bioinformatics, 2000, 16(7): 573−582. doi: 10.1093/bioinformatics/16.7.573
    [17] LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 2009, 25(11): 1451−1452. doi: 10.1093/bioinformatics/btp187
    [18] SHAH H, YASMIN T Y, FAHIM M, et al. Transmission and host range studies of Pakistani isolate of Chilli veinal mottle virus [J]. Pakistan Journal of Botany, 2008, 40(6): 2669−2681.
    [19] BENTLEY K, EVANS D J. Mechanisms and consequences of positive-strand RNA virus recombination [J]. Journal of General Virology, 2018, 99(10): 1345−1356. doi: 10.1099/jgv.0.001142
    [20] COMBE M, SANJUÁN R. Variation in RNA virus mutation rates across host cells [J]. PLoS Pathogens, 2014, 10(1): e1003855. doi: 10.1371/journal.ppat.1003855
    [21] NOVELLA I S, PRESLOID J B, TAYLOR R T. RNA replication errors and the evolution of virus pathogenicity and virulence [J]. Current Opinion in Virology, 2014, 9: 143−147. doi: 10.1016/j.coviro.2014.09.017
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1291
  • HTML全文浏览量:  767
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-03-04
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回