• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DPPH法的茶叶儿茶素类抗氧化谱效关系研究

林清霞 王丽丽 杨军国 宋振硕 陈林

林清霞,王丽丽,杨军国,等. 基于DPPH法的茶叶儿茶素类抗氧化谱效关系研究 [J]. 福建农业学报,2020,35(2):210−216 doi: 10.19303/j.issn.1008-0384.2020.02.012
引用本文: 林清霞,王丽丽,杨军国,等. 基于DPPH法的茶叶儿茶素类抗氧化谱效关系研究 [J]. 福建农业学报,2020,35(2):210−216 doi: 10.19303/j.issn.1008-0384.2020.02.012
LIN Q X, WANG L L, YANG J G, et al. Spectrum-effect Relationship between HPLC Fingerprints and DPPH-scavenging Activities of Tea Catechins [J]. Fujian Journal of Agricultural Sciences,2020,35(2):210−216 doi: 10.19303/j.issn.1008-0384.2020.02.012
Citation: LIN Q X, WANG L L, YANG J G, et al. Spectrum-effect Relationship between HPLC Fingerprints and DPPH-scavenging Activities of Tea Catechins [J]. Fujian Journal of Agricultural Sciences,2020,35(2):210−216 doi: 10.19303/j.issn.1008-0384.2020.02.012

基于DPPH法的茶叶儿茶素类抗氧化谱效关系研究

doi: 10.19303/j.issn.1008-0384.2020.02.012
基金项目: 福建省科技计划公益类专项(2019R1029-3);福建省农业科学院青年人才创新基金项目(YC2018-7)
详细信息
    作者简介:

    林清霞(1989−),女,硕士,研究实习员,研究方向:茶叶精深加工(E-mail:735801309@qq.com

    通讯作者:

    陈林(1975−),男,博士,研究员,研究方向:茶叶加工、茶叶生物化学及综合利用研究(E-mail:chenlin_xy@163.com

  • 中图分类号: TS 272

Spectrum-effect Relationship between HPLC Fingerprints and DPPH-scavenging Activities of Tea Catechins

  • 摘要:   目的  研究茶叶儿茶素HPLC指纹图谱与其自由基清除活性的关系。  方法  采用70%甲醇对绿茶、白茶、闽北乌龙、闽南乌龙、红茶5类共25批次样本进行提取;以福林酚法测定总酚含量;以1,1-二苯基-2-三硝基苯肼(DPPH)法研究自由基清除活性;同时通过高效液相色谱法(HPLC)获取指纹图谱数据并对所获取的指纹图谱数据进行主成分分析;采用偏最小二乘回归分析研究HPLC指纹图谱与DPPH清除活性的谱效关系,结合皮尔逊(Pearson)相关性分析对偏最小二乘回归模型进行验证。  结果  获取25批次样本的HPLC指纹图谱,确定了8个儿茶素类化合物,成功构建了偏最小二乘回归方程,其决定系数R2=0.900 9。结果表明表没食子儿茶素没食子酸酯(EGCG)、表没食子儿茶素(EGC)、表儿茶素没食子酸酯(ECG)与DPPH清除力相关性最强,均呈极显著正相关;没食子酸(GA)与DPPH清除力呈负相关。Pearson相关性分析结果与偏最小二乘回归模型结果基本一致。  结论  本研究通过HPLC指纹图谱信息可预测抗氧化活性。
  • 图  1  茶样的总酚含量及其DPPH清除活性

    注:G、W、N、S、B分别代表绿茶、白茶、闽北乌龙、闽南乌龙、红茶。图2同。

    Figure  1.  Polyphenol contents and DPPH radical scavenging activities of tea specimens

    Note:G, W, N, S, and B represent samples of green tea, white tea, northern Fujian oolong, southern Fujian oolong, and black tea, respectively. The same for Fig.2.

    图  2  25个茶样共有峰的主成分分析

    Figure  2.  Scatter plot of PCA scores on common peaks of HPLC fingerprints from 25 samples

    图  3  25个样品的HPLC指纹图谱

    注:图中各样品编号由上至下分别为W1、W2、W3、W4、W5、B1、B2、B3、B4、B5、G1、G2、G3、G4、G5、S1、S2、S3、S4、S5、N1、N2、N3、N4、N5。

    Figure  3.  HPLC fingerprints from 25 samples

    Note:The sample numbers from the top to the bottom are: W1, W2, W3, W4, W5, B1, B2, B3, B4, B5, G1, G2, G3, G4, G5, S1, S2, S3, S4, S5, N1, N2, N3, N4, N5, respectively.

    表  1  25个样品HPLC指纹图谱共有峰峰面积

    Table  1.   Average areas of common peaks on HPLC fingerprints from 25 samples

    样品
    Samples
    25个样品共有峰的峰面积 mAU*S
    Average peak area of every common peak mAU*S
    GAGCEGCEGCGECGCGECGCG
    G1 40.13±1.40 18.22±2.25 65.87±3.57 2 227.66±13.35 49.54±1.15 32.02±1.95 995.88±9..90 8.77±5.70
    G2 25.03±1.54 8.54±0.57 74.24±0.11 1637.85±3.57 121.59±0.92 12.23±1.27 768.66±5.20 10.52±1.24
    G3 21.94±0.46 17.81±0.64 80.63±0.67 1716.19±1.63 147.59±1.70 18.96±1.38 769.49±3.11 8.59±1.70
    G4 21.11±1.15 14.70±3.50 79.25±3.20 1653.04±13.25 150.69±3.20 10.51±0.20 765.03±15.75 10.56±2.65
    G5 13.18±1.15 13.06±0.45 91.82±4.33 1894.60±6.30 169.08±1.10 20.26±0.40 952.57±3.51 14.85±5.45
    W1 41.36±0.90 4.55±3.05 111.84±5.55 2038.52±68.95 34.36±3.85 20.29±0.55 875.54±16.45 5.64±2.30
    W2 43.63±1.10 10.71±1.70 89.49±2.95 1382.64±43.60 57.11±3.35 12.58±0.50 569.71±12.55 6.08±1.20
    W3 41.22±0.35 5.80±0.55 91.56±0.45 1836.79±4.55 50.96±8.95 14.19±0.65 642.15±2.20 7.49±0.10
    W4 27.76±1.10 8.32±0.80 95.98±5.95 1814.42±94.35 58.06±4.00 9.37±2.35 545.45±22.70 6.22±0.55
    W5 47.33±1.30 7.55±0.30 70.44±0.15 1326.74±9.80 36.01±2.40 7.29±1.15 412.72±1.70 6.11±1.00
    N1 106.43±0.50 6.64±0.45 64.66±0.30 965.38±67.50 79.93±11.40 16.89±4.35 321.53±39.65 16.39±1.05
    N2 94.12±0.65 9.42±1.30 78.55±1.40 1037.62±2.00 91.03±1.5 22.86±0.75 313.46±5.20 15.66±1.30
    N3 102.94±0.35 8.44±5.22 79.80±2.60 983.68±22.30 87.01±1.82 20.98±0.60 298.41±9.28 10.53±1.83
    N4 70.68±0.85 10.03±1.83 69.03±0.70 955.95±2.85 93.20±1.65 22.93±3.45 303.44±0.60 14.65±0.99
    N5 155.18±0.45 15.98±1.55 65.33±0.75 578.92±9.85 19.10±0.10 154.82±0.25 212.88±4.50 40.47±2.20
    S1 4.20±0.90 16.01±3.05 94.03±5.55 1523.93±68.95 86.89±3.85 8.96±0.55 368.55±16.45 10.68±2.30
    S2 5.38±1.10 12.29±1.70 70.83±2.95 1361.34±43.60 109.65±2.35 9.23±1.95 402.72±12.4 11.26±0.45
    S3 6.53±0.35 11.52±0.50 65.74±0.45 1066.28±4.50 125.36±8.95 5.74±0.65 319.91±2.20 8.80±0.10
    S4 4.93±1.10 11.48±0.80 70.38±5.95 1423.13±94.35 83.51±4.00 13.15±2.35 373.80±22.50 8.54±0.55
    S5 6.43±1.30 15.79±0.11 65.66±0.15 1298.71±9.80 74.57±2.40 8.64±1.15 335.69±1.72 7.32±1.12
    B1 203.94±17.35 0.48±0.07 45.49±2.35 11.04±0.39 2.85±0.09 3.24±0.12 71.26±7.35 8.22±1.84
    B2 210.96±0.050 ND 50.50±1.25 110.06±3.46 3.21±0.12 3.16±0.32 119.59±3.52 15.38±3.10
    B3 228.05±2.65 ND 70.50±4.55 434.56±3.45 15.89±2.80 5.83±2.35 343.13±4.00 12.55±2.65
    B4 180.05±0.65 ND 61.54±3.55 221.03±0.90 15.74±0.43 1.63±0.020 233.35±13.25 8.37±0.86
    B5 219.56±4.70 ND 63.60±7.00 155.15±4.15 9.92±0.30 4.38±1.25 261.40±7.30 19.73±4.05
    注:ND指未检出。
    Note:ND means undetected.
    下载: 导出CSV

    表  2  偏最小二乘回归方程假设检验结果

    Table  2.   Hypothetic result of partial least squares regression equation

    方差来源 Variance Source自由度 df方差 SS均方差 MSFP
    回归 Regress 8 1491 186 18 0
    残差 Residual 16 164 10
    总变异数 Total variation 24 1 655
    下载: 导出CSV

    表  3  偏最小二乘回归方程预测结果

    Table  3.   Predicted result from partial least squares regression equation

    模型检验
    Model test
    样品
    Sample
    预测值
    Predictive
    实测值
    Measured
    相对标准偏差
    Relative standard deviation/%
    内部验证
    Internal test
    G157.4560.875.62
    B340.9039.284.12
    N448.4850.584.15
    W356.2558.193.33
    S549.9248.253.46
    外部验证
    External test
    R147.4153.2510.97
    R262.1558.346.53
    R358.8361.464.28
    R447.9345.166.13
    R546.1743.057.25
    下载: 导出CSV

    表  4  茶样中共同峰与其DPPH清除活性之间的关系

    Table  4.   Correlation coefficients between DPPH radical scavenging activities and common peaks

    化合物 CompositionGAGCEGCEGCGECGCGECGCG
    相关系数 Correlation−0.723**0.609**0.808**0.899**0.427*0.1740.771**−0.170
    注:**表示在0.01水平(双侧)上显著相关,*表示在0.05水平(双侧)上显著相关。
    Note: ** indicates a significant correlation at 0.01 level (double sides); * shows a significant correlation at 0.05 1evel (double sides).
    下载: 导出CSV
  • [1] CHEN X Y, GOU S H, SHI Z Q, et al. Spectrum-effect relationship between HPLC fingerprints and bioactive components of Radix Hedysari on increasing the peak bone mass of rat [J]. Journal of Pharmaceutical Analysis, 2019, 9(4): 266−273. doi: 10.1016/j.jpha.2018.10.004
    [2] SHEN C H, LIU C T, SONG X J, et al. Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships [J]. Journal of Chromatography B, 2018, 1090: 73−80. doi: 10.1016/j.jchromb.2018.05.021
    [3] ZHAO Y, YOU X M, JIANG H, et al. Spectrum-effect relationships between high-performance liquid chromatography fingerprints and anti-inflammatory activities of Leontopodium leontopodioides (Willd.) Beauv [J]. Journal of Chromatography B, 2019, 1104: 11−17. doi: 10.1016/j.jchromb.2018.11.001
    [4] 李秋月. 延胡索生物碱谱-效关系及相互作用研究[D]. 北京: 北京协和医学院, 2014.
    [5] 吕邵娃, 董书羽, 郭玉岩, 等. 数据分析技术在中药谱效关系中的应用进展 [J]. 中国实验方剂学杂志, 2015, 21(15):226−230.

    LV S W, DONG S Y, GUO Y Y, et al. Advance in application of data analysis technique in spectrum-effect relationship of traditional Chinese medicines [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(15): 226−230.(in Chinese)
    [6] 曾令军, 林兵, 宋洪涛. 中药谱效关系研究进展及关键问题探讨 [J]. 中国中药杂志, 2015, 40(8):1425−1432.

    ZENG L J, LIN B, SONG H T. Progress in study of spectrum-effect relationship of traditional Chinese medicine and discussions [J]. China Journal of Chinese Materia Medica, 2015, 40(8): 1425−1432.(in Chinese)
    [7] 徐晶晶, 刘斌. 基于DPPH、FRAP法的薄荷药材抗氧化谱效关系研究 [J]. 北京中医药大学学报, 2015, 38(6):405−410. doi: 10.3969/j.issn.1006-2157.2015.06.009

    XU J J, LIU B. Spectrum-effect relation in antioxidant activity of Menthae haplocalycis Herba based on DPPH and FRAP assay [J]. Journal of Beijing University of Traditional Chinese Medicine, 2015, 38(6): 405−410.(in Chinese) doi: 10.3969/j.issn.1006-2157.2015.06.009
    [8] ZHU C S, ZHANG B, LIN Z J, et al. Relationship between high-performance liquid chromatography fingerprints and uric acid-lowering activities of Cichorium intybus L [J]. Molecules, 2015, 20(5): 9455−9467. doi: 10.3390/molecules20059455
    [9] 谭庆龙, 欧筱争, 谢丽霞, 等. 藏方甲嘎松汤挥发油体外抗氧化活性的谱效关系研究 [J]. 中药新药与临床药理, 2015, 26(3):360−364.

    TAN Q L, OU X Z, XIE L X, et al. Study on spectrum-effect relationship between fingerprints and antioxidant activities of essential oil from Tibetan medicine jiagasong decoction in vitro [J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2015, 26(3): 360−364.(in Chinese)
    [10] XU G L, XIE M, YANG X Y, et al. Spectrum-effect relationships as a systematic approach to traditional Chinese medicine research: current status and future perspectives [J]. Molecules, 2014, 19(11): 17897−17925. doi: 10.3390/molecules191117897
    [11] 王媛媛, 马飞祥, 李凤英, 等. 在线色谱联用技术检测天然产物抗氧化活性的研究进展 [J]. 北方药学, 2016, 13(9):123−125.

    WANG Y Y, MA F X, LI F Y, et al. Progress in the determination of antioxidant activity of natural products by on-line chromatography [J]. Journal of North Pharmacy, 2016, 13(9): 123−125.(in Chinese)
    [12] 韦献雅, 殷丽琴, 钟成, 等. DPPH法评价抗氧化活性研究进展 [J]. 食品科学, 2014, 35(9):317−322. doi: 10.7506/spkx1002-6630-201409062

    WEI X Y, YIN L Q, ZHONG C, et al. Advances in the DPPH radical scavenging assay for antioxidant activity evaluation [J]. Food Science, 2014, 35(9): 317−322.(in Chinese) doi: 10.7506/spkx1002-6630-201409062
    [13] ZHANG C, SUEN CLAIREL C, YANG C, et al. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade [J]. Food Chemistry, 2018, 244: 109−119. doi: 10.1016/j.foodchem.2017.09.126
    [14] LV H P, ZHANG Y, SHI J, et al. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies [J]. Food Research International, 2017, 100: 486−493. doi: 10.1016/j.foodres.2016.10.024
    [15] 林清霞, 项丽慧, 王丽丽, 等. 茶多酚高通量检测技术研究进展 [J]. 中国农学通报, 2019, 35(3):146−153.

    LIN Q X, XIANG L H, WANG L L, et al. High throughput test of tea polyphenols: a review [J]. Chinese Agricultural Science Bulletin, 2019, 35(3): 146−153.(in Chinese)
    [16] 周卫龙, 徐建峰, 黄伙水. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313-2018[S]. 北京: 中国标准出版社, 2018: 1-7.
    [17] 王丽丽, 陈键, 宋振硕, 等. 茶叶中没食子酸、儿茶素类和生物碱的HPLC检测方法研究 [J]. 福建农业学报, 2014, 29(10):987−994. doi: 10.3969/j.issn.1008-0384.2014.10.011

    WANG L L, CHEN J, SONG Z S, et al. Simultaneous HPLC determination of Gallic acid, catechins and alkaloids in tea [J]. Fujian Journal of Agricultural Sciences, 2014, 29(10): 987−994.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.10.011
    [18] 王丽丽, 杨军国, 宋振硕, 等. 鲜叶、绿茶和白茶化学组分比较及清除DPPH自由基研究 [J]. 茶叶学报, 2015, 56(4):214−222. doi: 10.3969/j.issn.1007-4872.2015.04.004

    WANG L L, YANG J G, SONG Z S, et al. Compositional differences and DPPH radical scavenging of fresh tea leaves, green tea and white tea [J]. Acta Tea Sinica, 2015, 56(4): 214−222.(in Chinese) doi: 10.3969/j.issn.1007-4872.2015.04.004
    [19] 陈金娥, 丰慧君, 张海容. 红茶、绿茶、乌龙茶活性成分抗氧化性研究 [J]. 食品科学, 2009, 30(3):62−66. doi: 10.3321/j.issn:1002-6630.2009.03.013

    CHEN J N, FENG H J, ZHANG H R. Effects of active ingredients in black tea, green tea and oolong tea on antioxidant capability [J]. Food Science, 2009, 30(3): 62−66.(in Chinese) doi: 10.3321/j.issn:1002-6630.2009.03.013
    [20] 林玲, 龚志华, 袁冬寅, 等. 相同加工原料下的6类茶体外抗氧化性能比较 [J]. 中国农学通报, 2018, 34(2):107−112. doi: 10.11924/j.issn.1000-6850.casb16120045

    LIN L, GONG Z H, YUAN D Y, et al. Comparison of antioxidative activity in vitro among six kinds of tea made from the same raw material [J]. Chinese Agricultural Science Bulletin, 2018, 34(2): 107−112.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb16120045
    [21] ZHAO C N, TANG G Y, CAO S Y, et al. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark Teas [J]. antioxidants, 2019, 8: 215−228. doi: 10.3390/antiox8070215
    [22] 杨伟丽, 肖文军, 邓克尼. 加工工艺对不同茶类主要生化成分的影响 [J]. 湖南农业大学学报(自然科学版), 2001, 27(5):384−386.

    YANG W L, XIAO W J, DENG K N. Effects of processing technology of different teas on the main biochemistry components [J]. Journal of Hunan Agricultural University(Natural Sciences Editon), 2001, 27(5): 384−386.(in Chinese)
    [23] 龙海林, 李强, 司银楚, 等. 虎杖的功效成分组研究Ⅲ: 对血浆黏度影响的谱效分析研究 [J]. 现代医药卫生, 2012, 28(20):3080−3082.

    LONG H L, LI Q, SI Y C, et al. Spectrum-effect relationship study on influence of effective compositions research Ⅲ of polygoni Cuspidation plasma viscosity [J]. Journal of Modern Medicine & Health, 2012, 28(20): 3080−3082.(in Chinese)
    [24] 肖遂. 基于谱效关系的中药铁苋菜抑菌物质辨识方法研究[D]. 北京: 中国农业科学院, 2013.

    XIAO S. A method for research of antibacterial constituent recognition of traditional Chinese medicine(Acalypha australis linn.) by spectrum-effect relationship[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
    [25] 邓书鸿, 聂磊. 中药谱效关系的分析方法及数据处理技术研究进展 [J]. 中药材, 2010, 33(11):1819−1823.

    DENG S H, NIE L. Advances in analytical methods and data processing techniques for the relationship between the spectrum and effect of traditional Chinese medicine [J]. Journal of Chinese Medicinal Materials, 2010, 33(11): 1819−1823.(in Chinese)
    [26] DOU Q P. Recent advances on tea polyphenols [J]. Frontiers in Bioscience, 2012, E4(1): 111−131. doi: 10.2741/e363
    [27] 卢怡雯, 李晓芬, 项朋志, 等. 没食子酸清除DPPH自由基的紫外-可见吸收光谱研究 [J]. 食品工业科技, 2014, 35(2):124−126, 130.

    LU Y W, LI X F, XIANG P Z, et al. Study on UV-Vis absorption spectrometric investigation of the gallic acid against DPPH free radicals [J]. Science and Technology of Food Industry, 2014, 35(2): 124−126, 130.(in Chinese)
    [28] 马慧, 茹鑫, 王津, 等. 4种茶叶水提物及茶多酚的体外抗氧化性能研究 [J]. 食品研究与开发, 2019, 40(8):65−70. doi: 10.3969/j.issn.1005-6521.2019.08.011

    MA H, RU X, WANG J, et al. Study on the antioxidant capacity of four tea water extracts and tea polyphenols in vitro [J]. Food Research and Development, 2019, 40(8): 65−70.(in Chinese) doi: 10.3969/j.issn.1005-6521.2019.08.011
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1429
  • HTML全文浏览量:  655
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2019-12-26
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回