• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米/豆科作物间作系统中不同互作因子对群体产量的影响

李奇松 李家俊 叶江华 罗晓棉 林文雄

李奇松,李家俊,叶江华,等. 玉米/豆科作物间作系统中不同互作因子对群体产量的影响 [J]. 福建农业学报,2020,35(6):582−590 doi: 10.19303/j.issn.1008-0384.2020.06.003
引用本文: 李奇松,李家俊,叶江华,等. 玉米/豆科作物间作系统中不同互作因子对群体产量的影响 [J]. 福建农业学报,2020,35(6):582−590 doi: 10.19303/j.issn.1008-0384.2020.06.003
LI Q S, LI J J, YE J H, et al. Crop-yields of Maize and Legume under Intercropping Cultivation [J]. Fujian Journal of Agricultural Sciences,2020,35(6):582−590 doi: 10.19303/j.issn.1008-0384.2020.06.003
Citation: LI Q S, LI J J, YE J H, et al. Crop-yields of Maize and Legume under Intercropping Cultivation [J]. Fujian Journal of Agricultural Sciences,2020,35(6):582−590 doi: 10.19303/j.issn.1008-0384.2020.06.003

玉米/豆科作物间作系统中不同互作因子对群体产量的影响

doi: 10.19303/j.issn.1008-0384.2020.06.003
基金项目: 福建省农业生态过程与安全监控重点实验室(福建农林大学)开放课题项目(NYST-2019-02);武夷学院引进人才科研启动项目(YJ201906)
详细信息
    作者简介:

    李奇松(1987−),男,博士,讲师,研究方向:作物生理与分子生态学(E-mail:liqisong0591@126.com

    通讯作者:

    林文雄(1957−),男,博士,教授,研究方向:作物生理与分子生态学(E-mail:lwx@fafu.edu.cn

  • 中图分类号: S 315

Crop-yields of Maize and Legume under Intercropping Cultivation

  • 摘要:   目的  明确在间作条件下不同互作因子(地上部互作、根系竞争、土壤环境改良)对不同复合群体的生态效应。  方法  以玉米/大豆和玉米/花生间作组合为研究对象,设置了间作无隔、间作网隔、间作全隔和3种作物的单作处理,比较分析不同间作处理的种间竞争关系和互作因子的产量贡献率。  结果  玉米/大豆和玉米/花生间作均能提高群体产量,其中玉米增产起到主要作用,不同作物的竞争力排序为玉米>大豆>花生;地上部互作效应主要体现在提高了两种间作组合中玉米的产量,其产量贡献率分别为15.83%(玉米/大豆)和15.98%(玉米/花生),但却显著抑制了花生的产量(−11.42%);根系竞争对玉米/大豆间作组合的单一作物和群体产量均起到负效应(玉米−2.87%、大豆−5.35%、群体−4.52%),而对玉米/花生间作组合的玉米和群体产量起到正效应(5.88%和0.80%);土壤环境改良对两种间作组合中各作物产量均表现出正效应,可显著提高间作系统的产量和稳定性。  结论  不同间作组合之间,由于作物在形态和生理上的差异,各互作因子对间作群体产量的贡献率存在差异,其中土壤环境改良对玉米/豆科间作系统的增产及稳产起到主要作用。通过量化不同互作因子对间作作物产量形成的生态效应,可为优化间作的田间作物配置和管理提供依据。
  • 表  1  不同处理下两种间作组合的作物产量和土地当量比(LER

    Table  1.   Crop-yields and LER of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆间作产量
    Maize/soybean intercropping yield/(kg·hm−2
    玉米/花生间作产量
    Maize/peanut intercropping yield/(kg·hm−2
    Y1mY1sLER1Y2mY2pLER2
    NS 3 066.45±119.73 a 1 156.05±48.98 ab 1.10±0.06 ab 3 460.50±79.35 a 1 764.60±47.52 a 1.12±0.03 a
    HS 3 141.15±138.66 a 1 214.40±27.63 a 1.15±0.03 a 3 311.40±99.47 a 1 795.35±31.69 a 1.11±0.01 a
    CS 3 012.39±174.32 a 1 091.55±20.41 b 1.05±0.03 b 2 939.70±54 .00 b 1 571.70±49.62 b 0.98±0.02 b
    MS 7 802.10±229.85 1 635.00±42.38 7 604.10±342.91 2 661.30±50.70
    注:(1)NS表示无隔处理,HS表示网隔处理,CS表示全隔处理,MS表示单作处理;Y1mY1sLER1分别表示玉米/大豆间作组合中的玉米产量、大豆产量、土地当量比;Y2mY2pLER2分别表示玉米/花生间作组合中的玉米产量、花生产量、土地当量比;(2)表中数值之后无相同小写字母者表示差异达显著水平(LSD test, P<0.05, n=3)(表25同)。
    Note: NS: non-separated treatment; HS: net-separated treatment; CS: completely separated treatment; MS: monoculture treatment. Y1m, Y1s and LER1 respectively represent maize yield, soybean yield and land equivalent ratio in maize/soybean intercropping. Y2m, Y2s and LER2 respectively represent maize yield, soybean yield and land equivalent ratio in maize/peanut intercropping. Different letters show significant differences determinedby the LSD(least significant difference)test(P<0.05, n=3)(the same as table 2-5).
    下载: 导出CSV

    表  2  不同处理下两种间作组合的区域时间等价率(ATER)和农田利用效率(LUE

    Table  2.   ATER and LUE of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    ATER1LUE1ATER2LUE2
    NS 1.01±0.05 ab 1.06±0.06 ab 1.02±0.02 a 1.07±0.02 a
    HS 1.06±0.02 a 1.10±0.03 a 1.02±0.01 a 1.06±0.01 a
    CS 0.97±0.03 b 1.01±0.03 b 0.89±0.03 b 0.94±0.03 b
    下载: 导出CSV

    表  3  不同处理下两种间作组合的相对拥挤系数(RCC

    Table  3.   RCC of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    RCC1mRCC1sRCC1RCC2mRCC2pRCC2
    NS 1.30±0.04 a 1.21±0.11 b 1.57±0.12 b 1.67±0.07 a 0.99±0.08 a 1.69±0.19 a
    HS 1.35±0.04 a 1.44±0.02 a 1.95±0.03 a 1.54±0.09 a 1.04±0.06 a 1.58±0.05 a
    CS 1.26±0.06 a 1.00±0.02 c 1.26±0.03 c 1.26±0.04 b 0.72±0.06 b 0.91±0.10 b
    下载: 导出CSV

    表  4  不同处理下两种间作组合的种间竞争力(A

    Table  4.   Competitiveness(A)of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    A1mA1sA2mA2p
    NS 0.12±0.04 ab −0.12±0.04 ab 0.37±0.02 a −0.37±0.02 b
    HS 0.09±0.03 b −0.09±0.03 b 0.29±0.05 b −0.29±0.05 a
    CS 0.16±0.03 a −0.16±0.03 a 0.31±0.02 b −0.31±0.02 a
    下载: 导出CSV

    表  5  不同处理下两种间作组合的实际产量损失指数(AYL)和系统生产力指数(SPI

    Table  5.   AYL and SPI of two intercropping systems with varied treatments

    处理
    Treatments
    玉米/大豆
    Maize/soybean intercropping
    玉米/花生
    Maize/peanut intercropping
    AYL1mAYL1sAYL1SPI1AYL2mAYL2pAYL2SPI2
    NS 0.18±0.02 a 0.06±0.03 b 0.24±0.03 b 575.91 0.37±0.03 a −0.01±0.03 a 0.36±0.05 a 566.81
    HS 0.21±0.02 a 0.11±0.00 a 0.32±0.02 a 599.62 0.31±0.04 a 0.01±0.02 a 0.32±0.03 a 562.74
    CS 0.16±0.03 a 0.00±0.01 c 0.16±0.03 c 551.55 0.16±0.02 b −0.11±0.03 b 0.05±0.05 b 495.37
    下载: 导出CSV

    表  6  不同互作因子对两间作组合的产量贡献率(YCR

    Table  6.   Yield contribution rates(YCR)by various interacting factors on two intercropping systems

    影响因子
    Treatments
    玉米/大豆间作
    Maize/soybean intercropping/%
    玉米/花生间作
    Maize/peanut intercropping/%
    YCR1mYCR1sYCR1YCR2mYCR2pYCR2
    土壤环境改良
    Improvement of soil environment
    4.9611.279.1714.6612.6113.29
    根系竞争
    Root competition
    −2.87−5.35−4.525.88−1.740.80
    地上部互作
    Aboveground interaction
    15.830.135.3615.98−11.42−2.28
    综合作用
    Comprehensive effect
    17.926.0510.0136.52−0.5511.81
    下载: 导出CSV
  • [1] MARIOTTI M, MASONI A, ERCOLI L, et al. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system [J]. <italic>Grass and Forage Science</italic>, 2009, 64(4): 401−412. doi: 10.1111/j.1365-2494.2009.00705.x
    [2] TILMAN D. Plant interactions. (book reviews: plant strategies and the dynamics and structure of plant communities) [J]. <italic>Science</italic>, 1988, 241: 853−855. doi: 10.1126/science.241.4867.853
    [3] WU Y S, GONG W Z, YANG F, et al. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping [J]. <italic>Plant Production Science</italic>, 2016, 19(2): 206−214. doi: 10.1080/1343943X.2015.1128095
    [4] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems [J]. <italic>Field Crops Research</italic>, 2017, 203: 16−23. doi: 10.1016/j.fcr.2016.12.007
    [5] 安颖蔚, 冯良山, 张鹏. 间作群体作物根系营养竞争与互作效应 [J]. 江苏农业科学, 2017, 45(5):26−28.

    AN Y W, FENG L S, ZHANG P. Nutrient competition and interaction effect of root in intercropping system [J]. <italic>Jiangsu Agricultural Sciences</italic>, 2017, 45(5): 26−28.(in Chinese)
    [6] XIA H Y, ZHAO J H, SUN J H, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates [J]. <italic>Field Crops Research</italic>, 2013, 150: 52−62. doi: 10.1016/j.fcr.2013.05.027
    [7] KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil. Review [J]. <italic>Journal of Plant Nutrition and Soil Science</italic>, 2000, 163(4): 421−431. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
    [8] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. <italic>Plant and Soil</italic>, 2009, 321(1/2): 5−33.
    [9] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. <italic>Nature Reviews Microbiology</italic>, 2013, 11(11): 789−799. doi: 10.1038/nrmicro3109
    [10] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. <italic>Nature Microbiology</italic>, 2018, 3(4): 470−480. doi: 10.1038/s41564-018-0129-3
    [11] LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems [J]. <italic>International Journal of Molecular Sciences</italic>, 2018, 19(2): 622. doi: 10.3390/ijms19020622
    [12] LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture [J]. <italic>The New Phytologist</italic>, 2014, 203(1): 63−69. doi: 10.1111/nph.12778
    [13] ZHENG X Y, ZHAO L, NAN X U, et al. Interspecific Interaction of Below-ground and Above-ground Indices in Mulberry-soybean Intercropping System [J]. <italic>Soils</italic>, 2011, 43(3): 493−497.
    [14] 刘广才, 杨祁峰, 李隆, 等. 小麦/玉米间作优势及地上部与地下部因素的相对贡献 [J]. 植物生态学报, 2008, 32(2):477−484. doi: 10.3773/j.issn.1005-264x.2008.02.027

    LIU G C, YANG Q F, LI L, et al. Intercropping advantage and contribution of above- and below-ground interactions in wheat-maize intercropping [J]. <italic>Journal of Plant Ecology (Chinese Version)</italic>, 2008, 32(2): 477−484.(in Chinese) doi: 10.3773/j.issn.1005-264x.2008.02.027
    [15] 吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响 [J]. 农业机械学报, 2014, 45(1):129−136, 142. doi: 10.6041/j.issn.1000-1298.2014.01.021

    LÜ Y, WU P T, CHEN X L, et al. Effect of above-and below-ground interactions on maize/soybean intercropping advantage [J]. <italic>Transactions of the Chinese Society for Agricultural Machinery</italic>, 2014, 45(1): 129−136, 142.(in Chinese) doi: 10.6041/j.issn.1000-1298.2014.01.021
    [16] 张向前, 黄国勤, 卞新民, 等. 红壤旱地玉米对间作大豆和花生边行效应影响的研究 [J]. 中国生态农业学报, 2012, 20(8):1010−1017. doi: 10.3724/SP.J.1011.2012.01010

    ZHANG X Q, HUANG G Q, BIAN X M, et al. Marginal effect of soybean and peanut intercropped with maize in upland red soils [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(8): 1010−1017.(in Chinese) doi: 10.3724/SP.J.1011.2012.01010
    [17] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping [J]. <italic>Experimental Agriculture</italic>, 1980, 16(3): 217−228. doi: 10.1017/S0014479700010978
    [18] ALLEN J R, OBURA R K. Yield of corn, cowpea, and soybean under different intercropping Systems1 [J]. <italic>Agronomy Journal</italic>, 1983, 75(6): 1005−1009. doi: 10.2134/agronj1983.00021962007500060032x
    [19] HIEBSCH C K, MCCOLLUM R E. Area-Time Equivalency Ratio: A Method For Evaluating The Productivity Of Intercrops 1 [J]. <italic>Agronomy Journal</italic>, 1987, 79(1): 15−22. doi: 10.2134/agronj1987.00021962007900010004x
    [20] LITHOURGIDIS A S, VLACHOSTERGIOS D N, DORDAS C, et al. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems [J]. <italic>European Journal of Agronomy</italic>, 2011, 34(4): 287−294. doi: 10.1016/j.eja.2011.02.007
    [21] DHIMA K, LITHOURGIDIS A S, VASILAKOGLOU I, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio [J]. <italic>Field Crops Research</italic>, 2007, 100(2): 249−256.
    [22] XUE Y F, XIA H Y, CHRISTIE P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review [J]. <italic>Annals of Botany</italic>, 2016, 117(3): 363−377. doi: 10.1093/aob/mcv182
    [23] 吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争 [J]. 应用生态学报, 2014, 25(1):139−146.

    LÜ Y, WU P T, CHEN X L, et al. Resource competition in maize/soybean intercropping system [J]. <italic>Chinese Journal of Applied Ecology</italic>, 2014, 25(1): 139−146.(in Chinese)
    [24] 陈伟, 薛立. 根系间的相互作用: 竞争与互利 [J]. 生态学报, 2004, 24(6):1243−1251. doi: 10.3321/j.issn:1000-0933.2004.06.023

    CHEN W, XUE L. Root interactions: competition and facilitation [J]. <italic>Acta Ecologica Sinica</italic>, 2004, 24(6): 1243−1251.(in Chinese) doi: 10.3321/j.issn:1000-0933.2004.06.023
    [25] LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping - I. Yield advantage and interspecific interactions on nutrients [J]. <italic>Field Crops Research</italic>, 2001, 71(2): 123−137. doi: 10.1016/S0378-4290(01)00156-3
    [26] LI L, SUN J H, ZHANG F, et al. Wheat/maize or wheat/soybean strip intercropping Ⅱ. Recovery or compensation of maize and soybean after wheat harvesting [J]. <italic>Field Crops Research</italic>, 2001, 71(3): 173−181. doi: 10.1016/S0378-4290(01)00157-5
    [27] YANG W T, WANG X W, WANG J W, et al. Crop-and soil nitrogen in legume-Gramineae intercropping system: Research progress [J]. <italic>Chinese Journal of Ecology</italic>, 2013, 32(9): 2480−2484.
    [28] TIAN X L, WANG C B, BAO X G, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. <italic>Plant and Soil</italic>, 2019, 436(1/2): 173−192.
    [29] 林文雄, 陈婷, 周明明. 农业生态学的新视野 [J]. 中国生态农业学报, 2012, 20(3):253−264. doi: 10.3724/SP.J.1011.2012.00253

    LIN W X, CHEN T, ZHOU M M. New dimensions in agroecology [J]. <italic>Chinese Journal of Eco-Agriculture</italic>, 2012, 20(3): 253−264.(in Chinese) doi: 10.3724/SP.J.1011.2012.00253
    [30] EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass [J]. <italic>Scientific Reports</italic>, 2017, 7: 44641. doi: 10.1038/srep44641
    [31] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition [J]. <italic>Field Crops Research</italic>, 2017, 201: 41−51. doi: 10.1016/j.fcr.2016.10.021
    [32] WANG Y F, QIN Y Z, CHAI Q, et al. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities [J]. <italic>Frontiers in Plant Science</italic>, 2018, 9: 483. doi: 10.3389/fpls.2018.00483
    [33] LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/ peanut intercropping [J]. <italic>Journal of Integrative Agriculture</italic>, 2016, 15(1): 101−110. doi: 10.1016/S2095-3119(15)61089-9
    [34] 杨小琴, 王洋, 齐晓宁, 等. 玉米间作体系的光合生理生态特征 [J]. 土壤与作物, 2019, 8(1):70−77. doi: 10.11689/j.issn.2095-2961.2019.01.008

    YANG X Q, WANG Y, QI X N, et al. Photosynthetic physio-ecological characteristics of maize intercropping system [J]. <italic>Soil and Crop</italic>, 2019, 8(1): 70−77.(in Chinese) doi: 10.11689/j.issn.2095-2961.2019.01.008
  • 加载中
表(6)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  197
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 修回日期:  2020-01-29
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回