• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叠氮化钠诱变对不同大豆种质低温耐受性的影响

田鑫 钟程 李性苑

田鑫,钟程,李性苑. 叠氮化钠诱变对不同大豆种质低温耐受性的影响 [J]. 福建农业学报,2020,35(7):699−708 doi: 10.19303/j.issn.1008-0384.2020.07.002
引用本文: 田鑫,钟程,李性苑. 叠氮化钠诱变对不同大豆种质低温耐受性的影响 [J]. 福建农业学报,2020,35(7):699−708 doi: 10.19303/j.issn.1008-0384.2020.07.002
TIAN X, ZHONG C, LI X Y. Effect of Sodium Azide-induced Mutagenesis on Low-temperature Tolerance of Soybean Germplasms [J]. Fujian Journal of Agricultural Sciences,2020,35(7):699−708 doi: 10.19303/j.issn.1008-0384.2020.07.002
Citation: TIAN X, ZHONG C, LI X Y. Effect of Sodium Azide-induced Mutagenesis on Low-temperature Tolerance of Soybean Germplasms [J]. Fujian Journal of Agricultural Sciences,2020,35(7):699−708 doi: 10.19303/j.issn.1008-0384.2020.07.002

叠氮化钠诱变对不同大豆种质低温耐受性的影响

doi: 10.19303/j.issn.1008-0384.2020.07.002
基金项目: 贵州省教育厅自然科学研究项目(黔教合KY字[2014]310)
详细信息
    作者简介:

    田鑫(1983−),男,博士,副教授,主要从事作物遗传育种研究(E-mail:tianxin_china@163.com

  • 中图分类号: S 565.1

Effect of Sodium Azide-induced Mutagenesis on Low-temperature Tolerance of Soybean Germplasms

  • 摘要:   目的  利用不同浓度叠氮化钠对3个种质大豆叶芽进行离体诱变,筛选最佳诱导浓度,并对其进行生理生化分析,鉴定诱变后不同种质丛生芽的低温耐受性。  方法  以常蔬特大王、台湾292、剑河大豆叶芽为材料,采用不同质量浓度叠氮化钠(0.4、0.8、1.0 mmol·L−1)进行离体诱导试验,筛选最佳诱导处理;进一步对经最佳诱导处理(0.8 mmol·L−1、48 h)的叶芽进行4℃低温胁迫处理4 d,在低温胁迫前及胁迫期间共5 d中,每天测定其生理生化指标。  结果  0.8 mmol·L−1叠氮化钠处理48 h的死亡率略高于半致死率,为最佳诱导处理。3个种质诱变植株在低温胁迫下的渗透调节物质、光合色素含量均高于对照,种质差异表现为台湾292>常蔬特大王>剑河大豆。常温条件下叠氮化钠诱变能显著提高台湾292、剑河大豆的SOD、CAT活性。3个种质的正常植株在低温胁迫下的抗氧化能力存在差异,剑河大豆(SOD、POD活性提升)>常蔬特大王(POD活性提升)>台湾292(SOD、POD活性略有提升,CAT活性下降)。叠氮化钠诱变对3个种质的低温抗氧化能力提升水平不一样,与对照植株相比,台湾292(POD活性提升,SOD活性略有下降)>常蔬特大王(无显著变化)>剑河大豆(SOD、POD活性下降)。常蔬特大王和台湾292的MDA含量表现为先升高后降低,而剑河大豆一直保持升高趋势,但相对于0 d的MDA含量提高的种质间差异表现为:台湾292>常蔬特大王>剑河大豆。  结论  叠氮化钠诱变可提高3个大豆种质的渗透调节物质、光合色素含量,其中:改良种质常蔬特大王和台湾292提升较多,地方种质剑河大豆提升较少。改良种质台湾292诱变前后及低温处理前后表现较好,抗氧化能力有所提升;常蔬特大王诱变前后及低温处理前后均表现稳定,诱变对其性状改良潜力较小;诱变对未经改良的地方种质剑河大豆抗氧化酶活性改变较大,在常温下为有利变异,在低温下为不利变异。综合以上结论可知,叠氮化钠诱变对不同大豆种质的低温耐受性提升水平存在差异,表现为:台湾292>常蔬特大王>剑河大豆。
  • 图  1  3个大豆种质诱变植株与对照植株在低温胁迫下的生理指标CSTDW:常蔬特大王,TW292:台湾292,JHS:剑河大豆。

    注:处理间连线上标记*、**分别表示差异显著(P<0.05)、极显著(P<0.01)。

    Figure  1.  Physiological indices on mutant and control soybean germplasms under low-temp stress

    Note: * and ** represent significant difference (P<0.05) and extremely significant difference (P<0.01), respectively.

    图  2  3个大豆种质诱变与对照(CK)植株在4℃低温胁迫下的SOD活性

    注:同一时间点不同处理间标记不同小写、大写字母分别表示差异显著(P<0.05)、极显著(P<0.01);诱变处理不同时间点标记*、**分别表示各时间点与第0 d差异显著(P<0.05)、极显著(P<0.01);CK不同时间点标记*、**分别表示各时间点与第0 d差异显著(P<0.05)、极显著(P<0.01),图25下同。

    Figure  2.  Differences on SOD activity between mutant and control soybean germplasms under 4 ℃ low-temp stress

    Note: At same sampling time, different lowercase letters and capitalized letters indicate significant differences (P<0.05) and extremely significant differences (P<0.01), respectively, on different treatments. For mutation treatment, * and ** represent significant differences (P<0.05) and extremely significant differences (P<0.01), respectively, between sampling time and 0d. In CK, * and ** represent significant differences (P<0.05) and extremely significant differences (P<0.01), respectively, between sampling time and 0d. Same for the following.

    图  3  3个大豆种质诱变植株与对照植株在低温胁迫下的POD活性

    Figure  3.  POD activities of mutant and control soybean germplasms under low-temp stress

    图  4  3个大豆种质诱变植株与对照植株在低温胁迫下的CAT活性

    Figure  4.  CAT activities of mutant and control soybean germplasms under low-temp stress

    图  5  3个大豆种质诱变植株与对照植株在低温胁迫下的MDA含量

    Figure  5.  MDA contents of mutant and control soybean germplasms under low-temp stress

    表  1  叠氮化钠处理对大豆芽诱变的影响

    Table  1.   Effect of immersing buds in sodium azide solutions on induced mutagenesis of soybean germplasms

    品种名称
    Cultivar name
    浓度Concentration/
    (mmol·L−1
    处理时间
    time/h
    数量
    number/
    盒(芽数)
    污染数
    number of contamination/芽
    污染率
    rate of contamination/%
    死亡数
    death number/芽
    褐化数browning number/芽死亡率
    mortality rate/%
    丛生芽数number of buds
    常蔬特王Changshutedawang0.04830(260)3513.5000.00230
    0.44830(256)2610.270027.36161
    0.84830(231)3515.2119051.3080
    1.04830(224)156.720420100.000
    台湾 292
    Taiwan 292
    0.04830(190)157.9000.00197
    0.44830(207)2612.681339.71165
    0.84830(219)3013.8158072.1073
    1.04830(197)2211.217621100.000
    剑河大豆
    Jianhe soybean
    0.04830(267)4115.4000.00247
    0.44830(244)3012.383234.24205
    0.84830(275)145.11811068.27131
    1.04830(220)188.220317100.000
    下载: 导出CSV
  • [1] HARTMAN G L, WEST E D, HERMAN T K. Crops that feed the World 2. Soybean: worldwide production, use, and constraints caused by pathogens and pests [J]. Food Security, 2011, 3(1): 5−17. doi: 10.1007/s12571-010-0108-x
    [2] 张德荣, 张学君, 孟祥盟, 等. 大豆低温冷害敏感时期试验研究报告 [J]. 吉林农业科学, 1987(1):37−39.

    ZHANG D R, ZHANG X J, MENG X M, et al. Primary study on the key time for soybean plants to be injured by the lower temperature [J]. Journal of Jilin Agricultural Sciences, 1987(1): 37−39.(in Chinese)
    [3] 张德荣, 张学君. 大豆低温冷害试验研究报告 [J]. 大豆科学, 1988, 7(2):125−132.

    ZHANG D R, ZHANG X J. Study on cool injury of soybean [J]. Soybean Sciences, 1988, 7(2): 125−132.(in Chinese)
    [4] GAYNOR L G, LAWN R J, JAMES A T. Agronomic studies on irrigated soybean in southern New South Wales. I. Phenological adaptation of genotypes to sowing date [J]. Crop & Pasture Science, 2011, 62(12): 1056−1066.
    [5] YAMAGUCHI N, YAMAZAKI H, OHNISHI S, et al. Method for selection of soybeans tolerant to seed cracking under chilling temperatures [J]. Breeding Science, 2014, 64(1): 103−108. doi: 10.1270/jsbbs.64.103
    [6] 张东辉, 杨青春, 耿臻, 等. 我国大豆育种的现状分析 [J]. 农村经济与科技, 2017, 28(14):36. doi: 10.3969/j.issn.1007-7103.2017.14.028

    ZHANG D H, YANG Q C, GENG Z, et al. Current situation of soybean breeding in China [J]. Rural Economy and Science-Technology, 2017, 28(14): 36.(in Chinese) doi: 10.3969/j.issn.1007-7103.2017.14.028
    [7] 钮力亚, 于亮, 付晶, 等. 叠氮化钠在农作物育种中的应用 [J]. 河北农业科学, 2010, 14(12):52−53, 57. doi: 10.3969/j.issn.1088-1631.2010.12.020

    NIU L Y, YU L, FU J, et al. Application of sodium azide in crops breeding [J]. Journal of Hebei Agricultural Sciences, 2010, 14(12): 52−53, 57.(in Chinese) doi: 10.3969/j.issn.1088-1631.2010.12.020
    [8] 苑平, 吴娟娟, 李先信, 等. 叠氮化钠对纽荷尔脐橙腋芽的半致死浓度、生理影响和诱变效率研究 [J]. 湖南师范大学自然科学学报, 2018, 41(1):30−35.

    YUAN P, WU J J, LI X X, et al. Study on semi-lethal concentration, physiological effects and mutagenic efficiency of sodium azide on axillary buds in newhall navel orange(Citrus sinensis osbeck) [J]. Journal of Natural Science of Hunan Normal University, 2018, 41(1): 30−35.(in Chinese)
    [9] SUGIHARA N, HIGASHIGAWA T, ARAMOTO D, et al. Haploid plants carrying a sodium azide-induced mutation (fdr1) produce fertile pollen grains due to first Division restitution (FDR) in maize (Zea mays L.) [J]. Theoretical and Applied Genetics, 2013, 126(12): 2931−2941. doi: 10.1007/s00122-013-2183-9
    [10] 姜振峰, 刘志华, 李文滨, 等. 叠氮化钠对大豆M1的生物学诱变效应 [J]. 核农学报, 2006, 20(3):208−210. doi: 10.3969/j.issn.1000-8551.2006.03.011

    JIANG Z F, LIU Z H, LI W B, et al. M1 mutagenic effect on soybean induced by NaN3 [J]. Journal of Nuclear Agricultural Sciences, 2006, 20(3): 208−210.(in Chinese) doi: 10.3969/j.issn.1000-8551.2006.03.011
    [11] 李明飞, 谢彦周, 刘录祥, 等. 叠氮化钠诱变普通小麦陕农33突变体库的构建和初步评估 [J]. 麦类作物学报, 2015, 35(1):22−29. doi: 10.7606/j.issn.1009-1041.2015.01.04

    LI M F, XIE Y Z, LIU L X, et al. Construction and preliminary assessment of a mutant library of common wheat cultivar shaannong 33 mutated with sodium azide [J]. Journal of Triticeae Crops, 2015, 35(1): 22−29.(in Chinese) doi: 10.7606/j.issn.1009-1041.2015.01.04
    [12] 孔佑涵, 苑平, 吴娟娟, 等. 叠氮化钠处理纽荷尔脐橙腋芽的诱变效应研究 [J]. 分子植物育种, 2016, 14(12):3489−3495.

    KONG Y H, YUAN P, WU J J, et al. Study on the mutagen effect of NaN3 in axillary bud of newhall navel orange (Citrus sinensis osbeck) [J]. Molecular Plant Breeding, 2016, 14(12): 3489−3495.(in Chinese)
    [13] 韩伟, 魏岳荣, 盛鸥, 等. ‘巴西蕉’离体芽的化学诱变和抗镰刀菌酸材料的筛选 [J]. 核农学报, 2012, 26(9):1237−1243.

    HAN W, WEI Y R, SHENG O, et al. Chemical mutation and screening for tolerance to fusaric acid on shoot tip of Musa AAA Cavendish cv. ‘baxijiao’ [J]. Acta Agriculturae Nucleatae Sinica, 2012, 26(9): 1237−1243.(in Chinese)
    [14] 李波, 贾秀峰, 高美玲, 等. 诱变苜蓿愈伤组织抗寒性研究 [J]. 草地学报, 2004, 12(2):95−97. doi: 10.11733/j.issn.1007-0435.2004.02.004

    LI B, JIA X F, GAO M L, et al. A research on the cold-resistance of induced alfalfa calluses [J]. Acta Agrestia Sinica, 2004, 12(2): 95−97.(in Chinese) doi: 10.11733/j.issn.1007-0435.2004.02.004
    [15] 李波, 白庆武, 马兰, 等. 苜蓿抗性变异细胞系的筛选 [J]. 草业科学, 2003, 20(4):5−9.

    LI B, BAI Q W, MA L, et al. The selection of alfalfa resistance variation cells [J]. Pratacultural Science, 2003, 20(4): 5−9.(in Chinese)
    [16] 钱玉源, 韩轩, 刘祎, 等. 叠氮化钠(NaN3)诱变在作物性状改良中的应用 [J]. 安徽农业科学, 2017, 45(35):136−138, 141. doi: 10.3969/j.issn.0517-6611.2017.35.041

    QIAN Y Y, HAN X, LIU Y, et al. Application of sodium azide (NaN3) mutation in crop character improvement [J]. Journal of Anhui Agricultural Sciences, 2017, 45(35): 136−138, 141.(in Chinese) doi: 10.3969/j.issn.0517-6611.2017.35.041
    [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [18] 高兰英, 马庆. 诱发突变技术在小麦育种研究中的应用 [J]. 山西农业科学, 2009, 37(6):7−12. doi: 10.3969/j.issn.1002-2481.2009.06.002

    GAO L Y, MA Q. Mutants induction technology and its application in wheat breeding improvement [J]. Journal of Shanxi Agricultural Sciences, 2009, 37(6): 7−12.(in Chinese) doi: 10.3969/j.issn.1002-2481.2009.06.002
    [19] 徐冠仁. 植物诱变育种学 [M]. 北京: 中国农业出版社, 1996.
    [20] BHAGWAT B, DUNCAN E. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens [J]. Scientia Horticulturae, 1998, 73(1): 11−22. doi: 10.1016/S0304-4238(97)00141-6
    [21] 喻晓. 大百合无性系突变体诱导及其鉴定研究 [D]. 雅安: 四川农业大学, 2008.

    YU X. The study on induction and identification of mutations in cloned line of Cardiocinum giganteum [D]. Yaan, China: Sichuan Agricultural University, 2008. (in Chinese)
    [22] 马玉涵, 赵岩, 张强, 等. 叠氮化钠诱变对离体蝴蝶兰类原球茎生理的影响 [J]. 核农学报, 2010, 24(2):411−414, 301. doi: 10.11869/hnxb.2010.02.0411

    MA Y H, ZHAO Y, ZHANG Q, et al. Effect of azide sodium in mutagenesis on physiological traits of Phalaenosis protocorm-like body in vitro [J]. Journal of Nuclear Agricul Turae Sciences, 2010, 24(2): 411−414, 301.(in Chinese) doi: 10.11869/hnxb.2010.02.0411
    [23] 温日宇, 刘建霞, 宋亚静, 等. 叠氮化钠对绿豆种子和幼苗生长的诱变效应 [J]. 山西农业科学, 2017, 45(12):1933−1936. doi: 10.3969/j.issn.1002-2481.2017.12.09

    WEN R Y, LIU J X, SONG Y J, et al. Mutagenic effects of sodium azide on the growth of mung bean seeds and seedlings [J]. Journal of Shanxi Agricultural Sciences, 2017, 45(12): 1933−1936.(in Chinese) doi: 10.3969/j.issn.1002-2481.2017.12.09
    [24] 张兰. 苹果砧木组培苗耐盐诱变及筛选技术研究 [D]. 保定: 河北农业大学, 2002.

    ZHANG L. Studies on screening techniques for salt tolerance evaluation of induced mutants of apple stock in vitro [D]. Baoding, China: Hebei Agricultural University, 2002. (in Chinese)
    [25] 吕伯钦, 曾昭慧, 邓海, 等. 叠氮化钠的毒性研究 [J]. 卫生研究, 1992, 21(5):228−231, 278-279.

    LV B Q, ZENG Z H, DENG H, et al. Studies on toxicity of sodium azide [J]. Journal of Hygiene Research, 1992, 21(5): 228−231, 278-279.(in Chinese)
    [26] KIM T, JUNG Y, NA B, et al. Molecular cloning and expression of Cu/Zn-containing superoxide dismutase from Fasciola hepatica [J]. Infection and Immunity, 2000, 68(7): 3941−3948. doi: 10.1128/IAI.68.7.3941-3948.2000
    [27] 李波, 邬婷婷. NaN3诱变和盐碱胁迫对苜蓿愈伤组织生长和生理特性的影响 [J]. 干旱地区农业研究, 2019, 37(2):130−135, 143. doi: 10.7606/j.issn.1000-7601.2019.02.19

    LI B, WU T T. Effects of NaN3 mutagenesis and saline-alkali stress on growth and physiological characteristics of alfalfa callus [J]. Agricultural Research in the Arid Areas, 2019, 37(2): 130−135, 143.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.02.19
    [28] 刘建霞, 侍亚敏, 温日宇, 等. 晋藜1号种子及幼苗对叠氮化钠诱变的响应 [J]. 种子, 2018, 37(1):80−83.

    LIU J X, SHI Y M, WEN R Y, et al. Response of sodium azide mutagenesis on seeds and seedlings of Jinli No.1 quinoa [J]. Seed, 2018, 37(1): 80−83.(in Chinese)
    [29] 宇克莉, 邹婧, 邹金华. 镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响 [J]. 农业环境科学学报, 2010, 29(6):1050−1056.

    YU K L, ZOU J, ZOU J H. Effects of cadmium stress on antioxidant enzyme system and absorption of mineral elements in maize seedlings [J]. Journal of Agro-Environment Science, 2010, 29(6): 1050−1056.(in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  857
  • HTML全文浏览量:  233
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2020-01-20
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回