• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

武夷山不同土壤利用类型土壤氨氧化微生物群落的季节动态

李巍 黄彪 黄敏敏 刘文静 郭嘉 林香信

李巍,黄彪,黄敏敏,等. 武夷山不同土壤利用类型土壤氨氧化微生物群落的季节动态 [J]. 福建农业学报,2020,35(10):1119−1130 doi: 10.19303/j.issn.1008-0384.2020.10.010
引用本文: 李巍,黄彪,黄敏敏,等. 武夷山不同土壤利用类型土壤氨氧化微生物群落的季节动态 [J]. 福建农业学报,2020,35(10):1119−1130 doi: 10.19303/j.issn.1008-0384.2020.10.010
LI W, HUANG B, HUANG M M, et al. Diversity of Ammonia-oxidizing Microorganisms in Soils of Different Land Use on Wuyi Mountains [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1119−1130 doi: 10.19303/j.issn.1008-0384.2020.10.010
Citation: LI W, HUANG B, HUANG M M, et al. Diversity of Ammonia-oxidizing Microorganisms in Soils of Different Land Use on Wuyi Mountains [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1119−1130 doi: 10.19303/j.issn.1008-0384.2020.10.010

武夷山不同土壤利用类型土壤氨氧化微生物群落的季节动态

doi: 10.19303/j.issn.1008-0384.2020.10.010
基金项目: 福建省自然科学基金项目(2014J01112);福建省农业科学院自由探索科技创新项目(ZYTS2019028);福建省农业科学院农产品质量安全创新团队项目(STIT2017-1-12)
详细信息
    作者简介:

    李巍(1984−),女,硕士,助理研究员,主要从事土壤化学与植物营养研究(E-mail:liwei6055@126.com

    通讯作者:

    林香信(1972−),男,副研究员,主要从事农产品质量安全研究(E-mail:1353645173@qq.com

  • 中图分类号: S 154

Diversity of Ammonia-oxidizing Microorganisms in Soils of Different Land Use on Wuyi Mountains

  • 摘要:   目的  研究不同土地利用方式下土壤氨氧化微生物多样性的季节响应,以期了解武夷山不同土壤利用类型氨氧化微生物群落特征和季节变化。  方法  在福建省武夷山的常绿阔叶林区域,分别采集同一纬度下未被开发利用的原始林地和已被开发利用的茶园土壤,利用Illumina Hiseq高通量测序技术对土壤氨氧化微生物的相对丰度及多样性进行分析,同时测定土壤理化性质,并对二者进行关联性分析。  结果  (1)武夷山常绿阔叶林土壤含有丰富的氨氧化微生物资源,不同土地利用方式下土壤氨氧化微生物在Family水平相似,主要包括氨氧化古菌界的Unclassified Candidatus Nitrososphaera、Unclassified Crenarchaeota、Unclassified ThaumarchaeotaNitrosopumilus、Others;氨氧化细菌界的NitrosomonasNitrosospira、Unclassified Nitrosomonadaceae、Others,其中茶园拥有独特的Nitrosovibrio(亚硝化叶菌属)存在。(2)武夷山林地和茶园氨氧化微生物相对丰度有显著变化且随季节变化显著。(3)土壤氨氧化微生物群落结构与环境因子的关联性分析表明,不同的环境因子对土壤氨氧化细菌和土壤氨氧化古菌的影响不同,且不同季节的主要影响因子也存在差异,有效钾是影响氨氧化细菌变化的主要环境因子,而铵态氮是影响氨氧化古菌的主要环境因子。  结论  随季节变化武夷山常绿阔叶林土壤氨氧化微生物多样性呈现出规律性变化,不同土地利用方式对氨氧化微生物种类影响不大,但对其种群的相对丰度及季节相对丰度影响较大。
  • 图  1  林地和茶园不同季节土壤氨氧化细菌(A)和古菌(B)的相对丰度

    Figure  1.  Seasonal relative abundance of ammonia-oxidizing bacteria and archaea in soil on woodland and tea plantations

    图  2  林地(SD)土壤氨氧化细菌(A)和古菌(B)四季组成的韦恩图

    Figure  2.  Venn analysis of 4-year composition of ammonia-oxidizing bacteria and archaea in woodland soil

    图  3  武夷山茶园(CY)土壤氨氧化细菌(A)和古菌(B)四季组成的韦恩图

    Figure  3.  Venn analysis of four-year composition of ammonia-oxidizing bacteria and archaea in tea plantation soil

    图  4  林地(SD)和茶园(CY)氨氧化微生物细菌(A)和古菌(B)的PCA分析

    Figure  4.  Principal component analysis on ammonia-oxidizing bacteria and archaea in soils on woodland and tea plantations

    图  5  不同季节林地和茶园土壤氨氧化细菌(A)和古菌(B)相对丰度热图

    Figure  5.  Heatmap on seasonal relative abundance of ammonia-oxidizing bacteria (A) and archaea (B) in soils on woodland and tea plantations

    图  6  土壤氨氧化微生物与环境因子的RDA分析

    注:A图为环境因子与氨氧化细菌的RDA分析,B图为环境因子与氨氧化古菌的RDA分析,C图为硝化势与氨氧化细菌的RDA分析,D图为硝化势与氨氧化古菌的RDA分析;环境因子中Apo为有效钾,pH为pH值,Oc为有机碳,An为铵态氮,Aph为速效磷,PNR为硝化势。

    Figure  6.  RDA analysis on AOMs and environmental factors

    Note: A is RDA Analysis of environmental factors and Ammonia-oxidizing bacteria,B is RDA Analysis of environmental factors and Ammonia-oxidizing archaea,C is RDA Potential nitrification rate and Ammonia-oxidizing bacteria,D is RDA Potential nitrification rate and Ammonia-oxidizing archaea;Environ-mental Factors*: Apo is Available potassium,pH is pH value,Oc is Organic carbon,An is Ammonium nitrogen, Aph is Available phosphorus, PNR is potential nitrification rate.

    表  1  武夷山常绿阔叶林林地和茶园土壤基本理化性质的季节变化

    Table  1.   Seasonal variation of physicochemical properties of soils on evergreen broad-leaf forest land and tea plantations on Wuyi Mountains

    地区
    Area
    季节
    Season
    总有机碳
    Total organic carbon/
    (g·kg−1
    铵态氮
    Ammonium nitrogen/
    (mg·kg−1
    速效磷
    Available phosphorus/
    (mg·kg−1
    有效钾
    Available potassium/
    (mg·kg−1
    pH
    林地
    Wood land
    春 Spring 221.82 10.47 8.04 477.343.74
    夏 Summer174.0228.877.6398.513.81
    秋 Autumn134.5818.4311.95290.453.98
    冬 Winter88.0319.539.43221.293.74
    茶园
    Tea garden
    春 Spring66.5758.9012.07479.573.77
    夏 Summer87.2780.4815.14305.143.77
    秋 Autumn136.1766.7311.911 035.484.17
    冬 Winter36.1743.8229.741 573.514.19
    下载: 导出CSV

    表  2  氨氧化微生物与前4个约束性排序轴的特征值与累积解释量

    Table  2.   Eigenvalues and accumulated explanatory variables of AOMs and top 4 constrained ordinations

    约束性排序
    Constraint ordering
    RDA1RDA2RDA3RDA4
    特征值a Eigenvalues a 2.348 30.534 00.1390.062 7
    特征值b Eigenvalues b3.3420.7160.0180.004
    累计解释量a% Cumulative amount of interpretation a%46.9757.6560.4361.68
    累计解释量b% Cumulative amount of interpretation b%66.8481.1681.5281.60
    注:a表示环境因子与氨氧化细菌的特征值与累积解释量;b表示环境因子与氨氧化古菌的特征值与累积解释量。
    Note: a express eigenvalues and cumulative interpretations of Environmental Factors and ammonia-oxidizing archaea;b express the eigenvalues and accumulated explanatory volume of environmental factors and ammonia-oxidizing bacteria.
    下载: 导出CSV

    表  3  环境-物种相关系数及其重要性排序

    Table  3.   Environmental factors/microbial species correlations and order of importance

    环境因子*
    Environ-mental
    Factors
    排序轴1a
    Sorting axis
    1a
    排序轴1b
    Sorting axis
    1b
    排序轴2a
    Sorting axis
    2a
    排序轴2b
    Sorting axis
    2b
    环境因子-物种
    相关系数a
    Environment-correlation
    coefficients a
    环境因子-物种
    相关系数b
    Environment-correlation
    coefficients b
    重要性排序a
    Order of
    importance a
    重要性排序b
    Order of
    importance b
    有效钾 Available potassium 0.368 2 −0.469 6 0.929 8 0.882 9 0.385 0 0.287 412
    pH−0.997 1−0.674 5−0.766 0−0.738 30.253 20.270 823
    有机碳 Total organic carbon−0.633 6−0.466 0−0.773 7−0.884 70.252 00.223134
    铵态氮 Ammonium nitrogen−0.999 90.783 3−0.009 5−0.621 70.066 90.457 841
    速效磷 Available phosphorus0.799 20.279 10.601 10.960 30.056 40.047 355
    注:a表示氨氧化细菌,b表示氨氧化古菌。
    Note: a is ammonia-oxidizing archaea;b is ammonia-oxidizing bacteria.
    下载: 导出CSV
  • [1] 李巍, 刘洋, 罗钦, 等. 武夷山常绿阔叶林土壤微生物多样性的季节动态 [J]. 热带亚热带植物学报, 2017, 25(2):115−126. doi: 10.11926/jtsb.3656

    LI W, LIU Y, LUO Q, et al. Seasonal dynamics in soil microorganisms diversity of evergreen broad-leaved forest in Wuyi mountains, southeastern China [J]. Journal of Tropical and Subtropical Botany, 2017, 25(2): 115−126.(in Chinese) doi: 10.11926/jtsb.3656
    [2] 沙丽清, 孟盈. 西双版纳不同热带森林土壤氮矿化和硝化作用研究 [J]. 植物生态学报, 2000, 24(2):152−156. doi: 10.3321/j.issn:1005-264X.2000.02.005

    SHA L Q, MENG Y, et al. Nitrification and net N mineralization rate of soils under different tropical forests in Xishuangbanna, southwest China [J]. Acta Phytoecologica Sinica, 2000, 24(2): 152−156.(in Chinese) doi: 10.3321/j.issn:1005-264X.2000.02.005
    [3] 李检舟, 沙丽清, 王君, 等. 云南哀牢山中山湿性常绿阔叶林土壤氮矿化季节变化 [J]. 山地学报, 2006, 24(2):186−192. doi: 10.3969/j.issn.1008-2786.2006.02.011

    LI J Z, SHA L Q, WANG J, et al. Seasonal variation of soil nitrogen mineralization in a mountane moist evergreen broad-leaved forest in Ailao Mountains, SW China [J]. Journal of Mountain Science, 2006, 24(2): 186−192.(in Chinese) doi: 10.3969/j.issn.1008-2786.2006.02.011
    [4] 李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展 [J]. 生态学报, 2001, 21(7):1187−1195. doi: 10.3321/j.issn:1000-0933.2001.07.023

    LI G C, HAN X G, HUANG J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems [J]. Acta Ecologica Sinica, 2001, 21(7): 1187−1195.(in Chinese) doi: 10.3321/j.issn:1000-0933.2001.07.023
    [5] 周才平, 欧阳华, 刘金福. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响 [J]. 植物生态学报, 2001, 25(2):204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010

    ZHOU C P, OUYANG H, LIU J F. Temprature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest [J]. Acta Phytoecologica Sinica, 2001, 25(2): 204−209.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.02.010
    [6] 孟盈, 薛敬意, 沙丽清, 等. 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究 [J]. 植物生态学报, 2001, 25(1):99−104. doi: 10.3321/j.issn:1005-264X.2001.01.016

    MENG Y, XUE J Y, SHA L Q, et al. Variations of soil NH4-N, NO3-N and N mineralization under different forests in Xishuangbanna, southwest China [J]. Acta Phytoecologica Sinica, 2001, 25(1): 99−104.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.01.016
    [7] 莫江明, 郁梦德, 孔国辉. 鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究 [J]. 植物生态学报, 1997, 21(4):335−341. doi: 10.3321/j.issn:1005-264X.1997.04.006

    MO J M, YU M D, KONG G H. The dynamics of soil NH4-N and NO3-N in a pine forest of Dinghushan, as assessed by ion exchange resin bag method [J]. Acta Phytoecologica Sinica, 1997, 21(4): 335−341.(in Chinese) doi: 10.3321/j.issn:1005-264X.1997.04.006
    [8] GAN X H, ZHANG F Q, GU J D, et al. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China [J]. Antonie Van Leeuwenhoek, 2016, 109(2): 237−251. doi: 10.1007/s10482-015-0627-8
    [9] 朱国洁, 张娜, 杜雯, 等. 氨氧化微生物在氮循环中的生态功能及其影响因子 [J]. 天津农业科学, 2015, 21(12):48−53. doi: 10.3969/j.issn.1006-6500.2015.12.011

    ZHU G J, ZHANG N, DU W, et al. Ecological function of ammonia oxidizing microorganisms in the nitrogen cycle and their influence factors [J]. Tianjin Agricultural Sciences, 2015, 21(12): 48−53.(in Chinese) doi: 10.3969/j.issn.1006-6500.2015.12.011
    [10] WOESE C R, STACKEBRANDT E, WEISBURG W G, et al. The phylogeny of purple bacteria: the alpha subdivision [J]. Systematic and Applied Microbiology, 1984, 5(3): 315−326. doi: 10.1016/S0723-2020(84)80034-X
    [11] 李景云, 秦嗣军, 葛鹏, 等. 不同生育期苹果园土壤氨氧化微生物丰度研究 [J]. 植物营养与肥料学报, 2016, 22(4):1149−1156. doi: 10.11674/zwyf.15052

    LI J Y, QIN S J, GE P, et al. Abundance of ammonia oxidizers in apple orchard soil at different growth stages [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1149−1156.(in Chinese) doi: 10.11674/zwyf.15052
    [12] 郭帅, 徐秋芳, 沈振明, 等. 雷竹林土壤氨氧化微生物对不同肥料的响应 [J]. 浙江农林大学学报, 2014, 31(3):343−351. doi: 10.11833/j.issn.2095-0756.2014.03.003

    GUO S, XU Q F, SHEN Z M, et al. Response of soil ammonia-oxidizing organisms on fertilization and mulch in Phyllostachys violascens stands [J]. Journal of Zhejiang A& F University, 2014, 31(3): 343−351.(in Chinese) doi: 10.11833/j.issn.2095-0756.2014.03.003
    [13] 宋亚娜, 陈在杰, 林智敏. 水稻生育期内红壤稻田氨氧化微生物数量和硝化势的变化 [J]. 中国生态农业学报, 2010, 18(5):954−958. doi: 10.3724/SP.J.1011.2010.00954

    SONG Y N, CHEN Z J, LIN Z M. Abundance of ammonia-oxidizer and potential nitrification rate of quaternary red-clay paddy soil during rice growth [J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 954−958.(in Chinese) doi: 10.3724/SP.J.1011.2010.00954
    [14] 宋亚娜, 林智敏, 林捷. 不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成 [J]. 中国生态农业学报, 2009, 17(6):1211−1215. doi: 10.3724/SP.J.1011.2009.01211

    SONG Y N, LIN Z M, LIN J. Composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in paddy soils of different rice cultivars [J]. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1211−1215.(in Chinese) doi: 10.3724/SP.J.1011.2009.01211
    [15] 宋亚娜, 林智敏. 红壤稻田不同生育期土壤氨氧化微生物群落结构和硝化势的变化 [J]. 土壤学报, 2010, 47(5):987−994. doi: 10.11766/trxb200902230064

    SONG Y N, LIN Z M. Changes in community structures of ammonia-oxidizers and potential nitrification rates in red paddy soil at different growth stages of rice [J]. Acta Pedologica Sinica, 2010, 47(5): 987−994.(in Chinese) doi: 10.11766/trxb200902230064
    [16] 叶磊, 祝贵兵, 王雨, 等. 白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性 [J]. 生态学报, 2011, 31(8):2209−2215.

    YE L, ZHU G B, WANG Y, et al. Abundance and biodiversity of ammonia-oxidizing archaea and bacteria in littoral wetland of Baiyangdian Lake, North China [J]. Acta Ecologica Sinica, 2011, 31(8): 2209−2215.(in Chinese)
    [17] 隋心, 张荣涛, 钟海秀, 等. 森林生态系统中主要功能微生物的研究进展 [J]. 中国农学通报, 2014, 30(28):1−5. doi: 10.11924/j.issn.1000-6850.2014-1458

    SUI X, ZHANG R T, ZHONG H X, et al. Research progress on main functional microorganisms in forest ecosystems [J]. Chinese Agricultural Science Bulletin, 2014, 30(28): 1−5.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-1458
    [18] XIA W W, ZHANG C X, ZENG X W, et al. Autotrophic growth of nitrifying community in an agricultural soil [J]. The ISME Journal, 2011, 5(7): 1226. doi: 10.1038/ismej.2011.5
    [19] SEGAL L M, MILLER D N, MCGHEE R P, et al. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site [J]. Soil and Tillage Research, 2017, 168: 110−117. doi: 10.1016/j.still.2016.12.014
    [20] 黄蓉, 张金波, 钟文辉, 等. 土地利用方式对万木林土壤氨氧化微生物丰度的影响 [J]. 土壤, 2012, 44(4):581−587. doi: 10.3969/j.issn.0253-9829.2012.04.009

    HUANG R, ZHANG J B, ZHONG W H, et al. Abundances of ammonia-oxidizing prokaryotes and gross nitrification activities in forest soils under different vegetations in a natural reserve [J]. Soils, 2012, 44(4): 581−587.(in Chinese) doi: 10.3969/j.issn.0253-9829.2012.04.009
    [21] 朱蕊, 陈清, 马成仓, 等. 不同利用方式对内蒙古羊草草原氨氧化微生物丰度的影响 [J]. 草地学报, 2019, 27(2):437−442. doi: 10.11733/j.issn.1007-0435.2019.02.023

    ZHU R, CHEN Q, MA C C, et al. Effects of land use pattern changes on abundance of ammonia-oxidizing microorganisms in Leymus Chinensis grassland in Inner Mongolia [J]. Acta Agrestia Sinica, 2019, 27(2): 437−442.(in Chinese) doi: 10.11733/j.issn.1007-0435.2019.02.023
    [22] 路璐, 何燕. 不同林分土壤中氨氧化微生物的群落结构和硝化潜势差异及其驱动因子 [J]. 南方农业学报, 2018, 49(11):2169−2176. doi: 10.3969/j.issn.2095-1191.2018.11.08

    LU L, HE Y. The difference of ammonia-oxidizing microorganism communities structure and nitrification potential in soils of different forest stands and their driving factors [J]. Journal of Southern Agriculture, 2018, 49(11): 2169−2176.(in Chinese) doi: 10.3969/j.issn.2095-1191.2018.11.08
    [23] LAMBIN E F, MEYFROIDT P. Global land use change, economic globalization, and the looming land scarcity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3465−3472. doi: 10.1073/pnas.1100480108
    [24] MOORE N, ALAGARSWAMY G, PIJANOWSKI B, et al. East African food security as influenced by future climate change and land use change at local to regional scales [J]. Climatic Change, 2012, 110(3/4): 823−844.
    [25] 刘灵芝, 李景云, 秦嗣军, 等. “寒富”苹果园土壤氨氧化细菌的筛选与鉴定 [J]. 沈阳农业大学学报, 2015, 46(4):486−491. doi: 10.3969/j.issn.1000-1700.2015.04.016

    LIU L Z, LI J Y, QIN S J, et al. Screening and identification of soil ammonia-oxidizing bacteria from “Hanfu” apple orchard [J]. Journal of Shenyang Agricultural University, 2015, 46(4): 486−491.(in Chinese) doi: 10.3969/j.issn.1000-1700.2015.04.016
    [26] ZULKARNAEN N, ZHANG Y, ZHANG P, et al. Abundance of AOA, AOB, nirS, nirK, and nosZ in red soil of China under different land use [J]. IOP Conference Series: Earth and Environmental Science, 2019, 393: 12007. doi: 10.1088/1755-1315/393/1/012007
    [27] 鲍士旦. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社, 2000: 40, 81.
    [28] 辛亮, 武传东, 曲东. 长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响 [J]. 西北农业学报, 2012, 21(6):41−46. doi: 10.3969/j.issn.1004-1389.2012.06.009

    XIN L, WU C D, QU D. Long-term fertilization determining ammonia-oxidizing organism abundance and distribution in dry highland soil of loess plateau [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(6): 41−46.(in Chinese) doi: 10.3969/j.issn.1004-1389.2012.06.009
    [29] 宋三多, 陈强, 熊璐, 等. 不同沼肥处理对小麦分蘖期土壤硝化作用强度及氨氧化细菌和古菌群落的影响 [J]. 麦类作物学报, 2016, 36(1):111−119. doi: 10.7606/j.issn.1009-1041.2016.01.16

    SONG S D, CHEN Q, XIONG L, et al. Effect of biogas manure on soil nitrification intensity and soil ammonia-oxidizing bacteria and ammonia-oxidizing Archaea communities at wheat tillering stage [J]. Journal of Triticeae Crops, 2016, 36(1): 111−119.(in Chinese) doi: 10.7606/j.issn.1009-1041.2016.01.16
    [30] NIU J, KASUGA I, KURISU F, et al. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process [J]. Applied Microbiology and Biotechnology, 2016, 100(2): 729−742. doi: 10.1007/s00253-015-6969-3
    [31] LIU B, LI Y M, ZHANG J P, et al. Abundance and diversity of ammonia-oxidizing microorganisms in the sediments of Jinshan lake [J]. Current Microbiology, 2014, 69(5): 751−757. doi: 10.1007/s00284-014-0646-0
    [32] LI M, CAO H L, HONG Y G, et al. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments [J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1243−1254. doi: 10.1007/s00253-010-2929-0
    [33] ADAIR K L, SCHWARTZ E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA [J]. Microbial Ecology, 2008, 56(3): 420−426. doi: 10.1007/s00248-007-9360-9
    [34] CHEN Z M. Ecosystem functions in Nanling National Nature Reserve and protective measures concerned [J]. Shaanxi Forest Science & Technology, 2012, 61-63: 19.
    [35] QIN H L, YUAN H Z, ZHANG H, et al. Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3−N loss in acidic soil of sloped land [J]. Biology and Fertility of Soils, 2013, 49(6): 767−776. doi: 10.1007/s00374-012-0767-1
    [36] JORDAN F L, CANTERA J J L, FENN M E, et al. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem [J]. Applied and Environmental Microbiology, 2005, 71(1): 197−206. doi: 10.1128/AEM.71.1.197-206.2005
    [37] HAYDEN H L, DRAKE J, IMHOF M, et al. The abundance of nitrogen cycle genes AmoA and nifH depends on land-uses and soil types in South-Eastern Australia [J]. Soil Biology and Biochemistry, 2010, 42(10): 1774−1783. doi: 10.1016/j.soilbio.2010.06.015
    [38] 曹彦强, 闫小娟, 罗红燕, 等. 不同酸碱性紫色土的硝化活性及微生物群落组成 [J]. 土壤学报, 2018, 55(1):194−202. doi: 10.11766/trxb20170706295

    CAO Y Q, YAN X J, LUO H Y, et al. Nitrification activity and microbial community structure in purple soils with different pH [J]. Acta Pedologica Sinica, 2018, 55(1): 194−202.(in Chinese) doi: 10.11766/trxb20170706295
    [39] LU L, HAN W Y, ZHANG J B, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea [J]. The ISME Journal, 2012, 6(10): 1978−1984. doi: 10.1038/ismej.2012.45
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  187
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-07-12
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回