• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

响应面优化刺五加总黄酮提取工艺及体外抗氧化研究

阚琦缤 刘瑞雪 王晓娅 苏建青 褚秀玲

阚琦缤,刘瑞雪,王晓娅,等. 响应面优化刺五加总黄酮提取工艺及体外抗氧化研究 [J]. 福建农业学报,2021,36(3):358−368 doi: 10.19303/j.issn.1008-0384.2021.03.015
引用本文: 阚琦缤,刘瑞雪,王晓娅,等. 响应面优化刺五加总黄酮提取工艺及体外抗氧化研究 [J]. 福建农业学报,2021,36(3):358−368 doi: 10.19303/j.issn.1008-0384.2021.03.015
KAN Q B, LIU R X, WANG X Y, et al. Process Optimization and In Vitro Antioxidant Activity of Flavonoids Extracted from Acanthopanax senticosus [J]. Fujian Journal of Agricultural Sciences,2021,36(3):358−368 doi: 10.19303/j.issn.1008-0384.2021.03.015
Citation: KAN Q B, LIU R X, WANG X Y, et al. Process Optimization and In Vitro Antioxidant Activity of Flavonoids Extracted from Acanthopanax senticosus [J]. Fujian Journal of Agricultural Sciences,2021,36(3):358−368 doi: 10.19303/j.issn.1008-0384.2021.03.015

响应面优化刺五加总黄酮提取工艺及体外抗氧化研究

doi: 10.19303/j.issn.1008-0384.2021.03.015
基金项目: 国家自然科学基金(31872515)
详细信息
    作者简介:

    阚琦缤(1995−),男,硕士研究生,研究方向:天然药物提取与机理研究(E-mail:kanqibin@163.com

    通讯作者:

    褚秀玲(1969−),女,博士,副教授,硕士生导师,研究方向:中兽医药机理研究(E-mail:chuxiul@163.com

  • 中图分类号: TS 254.1

Process Optimization and In Vitro Antioxidant Activity of Flavonoids Extracted from Acanthopanax senticosus

  • 摘要:   目的  采用响应面优化刺五加总黄酮的提取工艺,并探究其抗氧化能力,为刺五加的高效利用提供参考。  方法  在单因素试验的基础上,采用Box-Benhnken Design法优化总黄酮提取工艺,并通过DPPH自由基、ABTS自由基、羟基自由基、总还原能力以及对巨噬细胞RAW264.7氧化应激的保护作用评价刺五加总黄酮的抗氧化能力。  结果  通过响应面分析确定最佳提取工艺为:乙醇质量分数55%,提取时间73 min,液料比45 g·mL−1,提取温度72 ℃,在此条件下刺五加总黄酮提取率为(24.11±0.17 )mg·g−1;刺五加总黄酮对DPPH自由基、ABTS自由基和羟基自由基的半数抑制浓度(IC50)分别为28.38 μg·mL−1、103.77 μg·mL−1和228.70 μg·mL−1,并具有较强的总还原能力。刺五加总黄酮对H2O2刺激的RAW264.7细胞氧化损伤具有明显的保护作用。  结论  通过响应面法优化了刺五加总黄酮的提取工艺,并发现刺五加总黄酮具有较好的抗氧化能力,为其临床开发和应用奠定了基础。
  • 图  1  芦丁标准曲线

    Figure  1.  Standard curve of rutin

    图  2  乙醇体积分数对刺五加总黄酮得率的影响

    Figure  2.  Effect of ethanol concentration on extraction yield of total flavonoids

    图  3  液料比对刺五加总黄酮得率的影响

    Figure  3.  Effect of liquid-solid ratio on extraction yield of total flavonoids

    图  4  提取时间对刺五加总黄酮得率的影响

    Figure  4.  Effect of extraction time on yield of total flavonoids

    图  5  提取温度刺五加总黄酮得率的影响

    Figure  5.  Effect of extraction temperature on yield of total flavonoids

    图  6  两因素间交互作用对刺五加总黄酮得率的影响

    Figure  6.  Effect of interaction between two factors on extraction of total flavonoids

    图  7  DPPH自由基清除活性

    Figure  7.  DPPH free radical scavenging ability of extracted flavonoids

    图  8  ABTS+自由基清除活性

    Figure  8.  ABTS+ free radical scavenging ability of extracted flavonoids

    图  9  羟基自由基清除活性

    Figure  9.  Hydroxyl free radical scavenging ability of extracted flavonoids

    图  10  刺五加总黄酮还原能力

    Figure  10.  Reducing power of flavonoids extract from A. senticosus

    图  11  H2O2对RAW264.7细胞增殖的影响

    注:不同字母标号代表组别间差异性显著(P<0.05)。

    Figure  11.  Effects of H2O2 on proliferation of RAW264.7 cells

    Note: Different letters indicate significant difference at P<0.05.

    图  12  刺五加总黄酮对RAW264.7细胞氧化损伤保护作用

    注:不同字母标号代表组别间差异性显著(P<0.05)。

    Figure  12.  Effect of extracted flavonoids in protecting oxidative damage on RAW264.7 cells

    Note: Different letters indicate significant difference at P<0.05.

    表  1  单因素试验水平

    Table  1.   Level of single factor experiment

    单因素变量 Single Factor固定因素 Fixed Factors
    乙醇体积分数 Ethanol concentration(30%、40%、50%、60%、70%、80%) 液料比(Liquid- Solid ration)mL·g−1 ,提取时间(Extraction time)55 min,提取温度( Extraction temperature)50 ℃,提取功率( Extraction power)300 W
    液料比 Liquid- Solid ration(10、20、30、40、50、60 mL·g−1 乙醇体积分数(Ethanol concentration)50%,提取时间(Extraction time)55 min,提取温度(Extraction temperature)50 ℃,提取功率(Extraction power)300 W
    提取时间 Extraction time(25、40、55、70、85、100 min) 乙醇体积分数(Ethanol concentration)50%,液料比( Liquid- Solid ration)30 mL·g−1 ,提取温度(Extraction temperature)50 ℃,提取功率(Extraction power)300 W
    提取温度 Extraction temperature(40℃、50℃、60℃、70℃、80 ℃) 乙醇体积分数(Ethanol concentration)50%,液料比(Liquid- Solid ration)30 mL·g−1 ,提取时间(Extraction time)55 min,提取功率( Extraction power)300 W
    下载: 导出CSV

    表  2  四因素三水平响应面试验

    Table  2.   Response surface experiment of 4 factors and 3 levels

    因素 Factor水平Level
    −101
    A:乙醇体积分数 Ethanol concentration/ % 40 50 60
    B:液料比 liquid- Solid ration/ mL·g−1 30 40 50
    C:提取时间 Extraction time/ min 60 70 80
    D:提取温度 Extraction temperatur/ ℃ 60 70 80
    下载: 导出CSV

    表  3  响应面试验结果

    Table  3.   Results of response surface experiment

    试验组
    Group
    A:乙醇体积分数
    Ethanol
    Concentration
    / %
    B:液料比
    Liquid-Solid
    ratio/
    mL·g−1
    C:提取时间
    Extraction
    time/
    min
    D:提取温度
    Extraction
    temperature/
    总黄酮
    得率
    Yield/
    mg·g−1
    1 40 40 80 70 21.13
    2 50 30 70 60 21.26
    3 50 30 70 80 21.69
    4 50 50 60 70 22.26
    5 40 40 60 70 21.76
    6 50 40 80 80 22.51
    7 40 40 70 60 20.94
    8 40 40 70 80 22.51
    9 50 50 80 70 23.03
    10 60 40 80 70 23.18
    11 60 40 60 70 22.41
    12 50 40 60 60 21.18
    13 50 40 70 70 23.51
    14 50 40 80 60 21.99
    15 50 50 70 60 22.32
    16 50 40 70 70 23.59
    17 50 30 80 70 21.43
    18 60 50 70 70 23.34
    19 50 40 60 80 22.34
    20 50 40 70 70 23.59
    21 50 40 70 70 23.43
    22 60 40 70 60 22.76
    23 40 50 70 70 21.93
    24 40 30 70 70 20.82
    25 50 40 70 70 23.43
    26 50 50 70 80 23.24
    27 60 40 70 80 23.01
    28 60 30 70 70 22.01
    29 50 30 60 70 21.57
    下载: 导出CSV

    表  4  响应面试验方差分析

    Table  4.   Variance analysis of response surface experiment

    方差来源  
    Source  
    平方和
    Sum of squares
    自由度
    df
    均方
    Mean square
    F
    F value
    P
    P value
    显著性
    Significanc
    模型 Model 21.08 14 1.51 70.44 <0.000 1 **
    A 4.84 1 4.84 226.37 <0.000 1 **
    B 4.49 1 4.49 210.04 <0.000 1 **
    C 0.26 1 0.26 11.94 0.003 9 **
    D 1.96 1 1.96 91.70 <0.000 1 **
    AB 0.01 1 0.01 0.57 0.464 3
    AC 0.49 1 0.49 22.92 0.000 3 **
    AD 0.44 1 0.44 20.38 0.000 5 **
    BC 0.21 1 0.21 9.69 0.007 6 **
    BD 0.06 1 0.06 2.81 0.116 0
    CD 0.10 1 0.10 4.79 0.046 1 *
    A2 2.65 1 2.65 123.97 <0.000 1 **
    B2 3.66 1 3.66 171.45 <0.000 1 **
    C2 3.80 1 3.80 177.78 <0.000 1 **
    D2 2.70 1 2.70 126.41 <0.000 1 **
    残差 Residual 0.30 14 0.02
    失拟项 Lack of fit 0.27 10 0.03 4.28 0.087 0
    误差项 Pure error 0.03 4 0.01
    总回归 Cor total 21.28 28
    注:*:差异性显著(P<0.05);**:差异性极显著(P<0.01)。
    Note: *significant difference (P<0.05); **extremely significant difference (P<0.01).
    下载: 导出CSV

    表  5  刺五加总黄酮最佳提取条件

    Table  5.   Optimized conditions for flavonoid extraction from A. senticosus

    因素 Factor  水平值 Level value
    乙醇体积分数 Ethanol concentration 55%
    液料比 Liquid-Solid ration 45 mL·g−1
    提取时间 Extraction time 73 min
    提取温度 Extraction temperature 72 ℃
    预测得率 Predicted value of extraction yield 23.89 mg·g−1
    实际得率 Actual value of extraction yield 24.11±0.17 mg·g−1
    下载: 导出CSV
  • [1] 廖炎, 乐园. 氧化应激与器官损害 [J]. 中国现代医学杂志, 2013, 23(18):57−61. doi: 10.3969/j.issn.1005-8982.2013.18.011

    LIAO Y, LE Y. Oxidative stress and organ impairment [J]. China Journal of Modern Medicine, 2013, 23(18): 57−61.(in Chinese) doi: 10.3969/j.issn.1005-8982.2013.18.011
    [2] 杨海峰, 何宏勇, 陈海峰, 等. 刺五加提取物对断奶仔猪生长性能、免疫功能和肠道菌群的影响 [J]. 中国饲料, 2019(2):45−48.

    YANG H F, HE H Y, CHEN H F, et al. Effects of Acanthopanax senticosus extract on growth performance, immune function and intestinal flora in weaned piglets [J]. China Feed, 2019(2): 45−48.(in Chinese)
    [3] JIANG Y, WANG M H. Different solvent fractions of Acanthopanax senticosus harms exert antioxidant and anti-inflammatory activities and inhibit the human Kv1.3 channel [J]. J Med Food., 2015, Apr; 18(4): 468−575.
    [4] 王彦博, 石燕, 袁毅君. 麦积山野生刺五加多酚与黄酮的超声辅助提取与体外抗氧化活性的研究 [J]. 天然产物研究与开发, 2019, 31(12):2153−2162.

    WANG Y B, SHI Y, YUAN Y J. Ultrasonic assisted extraction of polyphenols and flavonoids from Maijishan wild Acanthopanax and their antioxidant activities in vitro [J]. Natural Product Research and Development, 2019, 31(12): 2153−2162.(in Chinese)
    [5] 高腾, 丁婵, 苏建青. 响应面优化超声辅助提取刺五加茎皮黄酮工艺 [J]. 中国畜牧杂志, 2017, 53(8):114−118.

    GAO T, DING C, SU J Q. Optimization of ultrasonic assisted extraction of flavonoids from the stem bark of Acanthopanax senticosus [J]. Chinese Journal of Animal Science, 2017, 53(8): 114−118.(in Chinese)
    [6] 吴桐, 徐慧春, 郑春英, 等. 快速溶剂萃取法提取刺五加叶中的黄酮类成分 [J]. 中国食品学报, 2013, 13(7):59−65.

    WU T, XU H C, ZHENG C Y, et al. Extraction of flavanoids from Acanthopanax Senticosus(Rupr. et Maxim) leaves by pressurized solvent extraction [J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(7): 59−65.(in Chinese)
    [7] 张晶, 邢媛媛, 金晓, 等. 响应面法优化艾蒿水提物的提取工艺及其抗氧化活性分析 [J]. 中国农业大学学报, 2020, 25(11):99−108. doi: 10.11841/j.issn.1007-4333.2020.11.11

    ZHANG J, XING Y Y, JIN X, et al. Optimizing the aqueous extraction process of Artemisia argyi by response surface methodology and its antioxidant activity analysis [J]. Journal of China Agricultural University, 2020, 25(11): 99−108.(in Chinese) doi: 10.11841/j.issn.1007-4333.2020.11.11
    [8] 常飞, 吴文能, 曹晖. 白补药总黄酮含量测定方法的建立 [J]. 天然产物研究与开发, 2016, 28(1):71−75, 82.

    CHANG F, WU W N, CAO H. Determination of total flavonoids in Salvia scapiformis hance [J]. Natural Product Research and Development, 2016, 28(1): 71−75, 82.(in Chinese)
    [9] XIE Y, GUO Q S, WANG G S. Preparative separation and purification of the total flavonoids in Scorzonera austriaca with macroporous resins [J]. Molecules, 2016, 21(6): 768. doi: 10.3390/molecules21060768
    [10] YE G H, TAO L Y, MA C L, et al. Influences of CCK-8 on expressions of apoptosis-related genes in prefrontal cortex neurons of morphine-relapse rats [J]. Neuroscience Letters, 2016, 631: 115−121. doi: 10.1016/j.neulet.2016.08.028
    [11] SRIDHAR K, CHARLES A L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs [J]. Food Chemistry, 2019, 275: 41−49. doi: 10.1016/j.foodchem.2018.09.040
    [12] ZHAO Z Y, ZHANG Q, LI Y F, et al. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities [J]. Carbohydrate Polymers, 2015, 119: 101−109. doi: 10.1016/j.carbpol.2014.11.052
    [13] DAI C Y, LIU P F, LIAO P R, et al. Optimization of flavonoids extraction process in Panax notoginseng stem leaf and a study of antioxidant activity and its effects on mouse melanoma B16 cells [J]. Molecules, 2018, 23(9): 2219. doi: 10.3390/molecules23092219
    [14] 徐金瑞, 张瑞芬, 潘国伟. 番石榴叶黄酮的微波提取及其抗氧化作用研究 [J]. 中国食品学报, 2010, 10(5):166−170. doi: 10.3969/j.issn.1009-7848.2010.05.024

    XU J R, ZHANG R F, PAN G W. Microwave extraction technology and antioxidation of flavonoid in guava leaf [J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(5): 166−170.(in Chinese) doi: 10.3969/j.issn.1009-7848.2010.05.024
    [15] CHEN S S, ZENG Z, HU N, et al. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology [J]. Food Chemistry, 2018, 242: 1−8. doi: 10.1016/j.foodchem.2017.08.105
    [16] YU M, WANG B, QI Z, et al. Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum [J]. Saudi Journal of Biological Sciences, 2019, 26(8): 2079−2084. doi: 10.1016/j.sjbs.2019.09.018
    [17] ZHANG L, JIANG Y H, PANG X N, et al. Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of Angelica keiskei using response surface methodology (RSM) [J]. Molecules, 2019, 24(19): 3461. doi: 10.3390/molecules24193461
    [18] ZHONG L J, LIU Y, XIONG B, et al. Optimization of ultrasound-assisted extraction of total flavonoids from Dendranthema indicum var. aromaticum by response surface methodology [J]. Journal of Analytical Methods in Chemistry, 2019, 2019: 1−10.
    [19] ZHU C P, ZHAI X C, LI L Q, et al. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel [J]. Food Chemistry, 2015, 177: 139−146. doi: 10.1016/j.foodchem.2015.01.022
    [20] LIN X Y, BAI D P, WEI Z X, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway [J]. PLoS One, 2019, 14(5): e0216711. doi: 10.1371/journal.pone.0216711
    [21] ZHOU J, ZHANG L C, LI Q P, et al. Simultaneous optimization for ultrasound-assisted extraction and antioxidant activity of flavonoids from Sophora flavescens using response surface methodology [J]. Molecules (Basel, Switzerland), 2018, 24(1): 112−127. doi: 10.3390/molecules24010112
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  155
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2021-03-05
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回