• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荔枝蝽Tessaratoma papillosa卵黄原蛋白及受体的序列及时空表达分析

程林 韩顺财 蒋敬涛 李海超 彭凌飞

程林,韩顺财,蒋敬涛,等. 荔枝蝽Tessaratoma papillosa卵黄原蛋白及受体的序列及时空表达分析 [J]. 福建农业学报,2021,36(7):793−805 doi: 10.19303/j.issn.1008-0384.2021.07.009
引用本文: 程林,韩顺财,蒋敬涛,等. 荔枝蝽Tessaratoma papillosa卵黄原蛋白及受体的序列及时空表达分析 [J]. 福建农业学报,2021,36(7):793−805 doi: 10.19303/j.issn.1008-0384.2021.07.009
CHENG L, HAN S C, JIANG J T, et al. Sequences and Spatiotemporal Expressions of Vitellogenin and Vitellogenin Receptor Genes of Tessaratoma papillosa [J]. Fujian Journal of Agricultural Sciences,2021,36(7):793−805 doi: 10.19303/j.issn.1008-0384.2021.07.009
Citation: CHENG L, HAN S C, JIANG J T, et al. Sequences and Spatiotemporal Expressions of Vitellogenin and Vitellogenin Receptor Genes of Tessaratoma papillosa [J]. Fujian Journal of Agricultural Sciences,2021,36(7):793−805 doi: 10.19303/j.issn.1008-0384.2021.07.009

荔枝蝽Tessaratoma papillosa卵黄原蛋白及受体的序列及时空表达分析

doi: 10.19303/j.issn.1008-0384.2021.07.009
基金项目: 福建省昆虫生态重点实验室开放课题(FIE201703)
详细信息
    作者简介:

    程林(1996−),男,硕士研究生,研究方向:昆虫生态与害虫综合治理(E-mail:767822531@qq.com

    通讯作者:

    彭凌飞(1982−),男,博士,讲师,研究方向:昆虫分类与系统学、害虫防治(E-mail:lingfeipeng@fafu.edu.cn

  • 中图分类号: S 435

Sequences and Spatiotemporal Expressions of Vitellogenin and Vitellogenin Receptor Genes of Tessaratoma papillosa

  • 摘要:   目的  为荔枝蝽Tessaratoma papillosa的产卵繁殖行为提供分子层面的理论基础,并为荔枝蝽防治的靶点筛选提供有益思路。  方法  采用转录组测序的方法,对荔枝蝽不同发育时期及组织进行转录组测序。通过筛选荔枝蝽的转录组数据和分子克隆的方法获得荔枝蝽卵黄原蛋白及其受体基因,并利用实时荧光定量PCR(qRT-PCR)分析其在不同发育阶段和组织部位的时空表达情况。  结果  获得荔枝蝽3个卵黄原蛋白基因(T.papi_Vg1,T.papi_Vg2,T.papi_Vg3)和1个卵黄原受体蛋白基因(T.papi_VgRs)。对4个基因进行分析,发现其均具有典型的保守结构域,是典型的昆虫VgVgRs基因。从进化关系看,荔枝蝽的VgVgRs基因的分子进化与物种之间的进化关系较为匹配。qRT-PCR结果显示Vg1基因在雌虫各个组织中表达量都比较高,雄成虫中仅在淋巴液中表达量较高,而Vg2和Vg3基因仅在雌虫脂肪体中较高表达。VgRs的表达与Vg的表达部位基本一致,在雌虫卵巢中表达量最高,其次是雌虫、雄虫淋巴液和若虫的脂肪体当中,在若虫触角、雄虫触角和雄虫精巢中也有少量表达。  结论  获得了荔枝蝽3个卵黄原蛋白基因和1个卵黄原蛋白受体基因,对其结构和进化关系进行探讨,并对其时空表达情况进行分析,为后续对荔枝蝽新防治靶标的筛选奠定基础。
  • 图  2  荔枝蝽3个卵黄原蛋白的氨基酸序列一致性分析

    注:红色方框标记为信号肽序列,紫色横线为LPD_N结构域,绿色横向标记为DUF1943结构域,粉色横线为VWD结构域,红色横线标记为low complexity结构域。

    Figure  2.  Homology of amino acid sequences of 3 T. papillosa vitellogenin genes

    Note: Red box contains signal peptide sequence; purple line indicates LPD_N domain; green line indicates DUF1943 domain; pink line indicates VWD domain; and red line indicates low complexity domain.

    图  1  荔枝蝽3个卵黄原蛋白及1个卵黄原受体蛋白的结构域

    注:3个卵黄原蛋白典型的卵黄原蛋白的结构域[LPD_N(紫色),DUF1943(绿色)和VWD结构域(红色)];Vg2在DUF1943结构域前面,包含一个low complexity(774-785)结构域(粉红色);Vg3在VWD结构域之后,包含一个low complexity(1752-1756)结构域(粉红色);卵黄原受体蛋白包含了8个LDLR,3个EGF,7个LY和1个GRAM结构域。

    Figure  1.  Schematic diagram of the structural domains of three vitellogenin and one vitellogenin receptor protein in T. papillosa

    Note: Three typical vitellogenin domains [LPD_N (purple), DUF1943 (green) and VWD domain (red)]. Vg2 has one low complexity (774-785) domain (pink) before DUF1943 domain, while Vg3 contains a low complexity (1752-1756) domain (pink)after the VWD domain, and vitellogenin receptor protein contains 8 LDLRs, 3 EGFs, and 7 LY and 1 GRAM domain.

    图  3  部分昆虫Vg蛋白进化树

    注:构建系统发育树所用到的基因信息见表3,利用MEGA X构建NJ树(Bootstrap值1000),黑色三角形标记为荔枝蝽3个Vg基因。

    Figure  3.  Phylogenetic tree of partial T. papillosa Vg

    Note: Genes used to construct phylogenetic tree are shown in Table 3; MEGA X used to construct NJ tree had a Bootstrap value of 1 000; and 3 T. papillosa Vg are marked by black triangles.

    图  4  部分昆虫VgRs蛋白进化树

    注:构建系统发育树所用到的基因信息见表4,利用MEGA X构建NJ树(Bootstrap值1000),黑色三角型标记为荔枝蝽VgRs基因。

    Figure  4.  Phylogenetic tree of partial T. papillosa VgRs

    Note: Genes used to construct phylogenetic tree are shown in Table 4; MEGA X used to construct NJ tree had a Bootstrap value of 1 000; and T. papillosa VgRs is marked by black triangle.

    图  5  荔枝蝽卵黄原蛋白基因在不同组织、不同发育时期中的表达分析

    注:a、c、e分别为Vg1、Vg2、Vg3基因在不同发育时期表达量分析,不同发育时期以若虫为基础进行比较。b、d、f分别为Vg1Vg2Vg3基因在不同组织表达量分析,不同组织以若虫触角为基础进行比较。组织部位标注见表1, 18S rRNA基因作为内参基因,图中数据为平均值±标准误,相对表达量差异显著(LSD法多重比对,P<0.05)。

    Figure  5.  Expressions of vitellogenin genes of T. papillosa in tissues at developmental stages

    Note: a, c, and e are expression levels of Vg1, Vg2, and Vg3, respectively, at different developmental stages, and the comparison is based on nymph in different development stages. b, d, and f respectively show the expression levels of Vg1 , Vg2 , and Vg3 genes in different tissues, and the different tissues are compared on the basis of nymph antennae. Tissues abbreviations are shown in Table 1; 18S rRNA gene is internal reference gene used; data are mean±standard error; and relative expression is significantly different determined by multiple comparison by LSD method at P<0.05.

    图  6  荔枝蝽卵黄原蛋白受体基因在不同组织,不同发育时期中的表达分析

    注:a为VgR基因在不同发育时期表达量分析,不同发育时期以幼虫为基础进行比较。b为VgR基因在不同组织表达量分析,不同组织是以幼虫触角为基础进行比较。组织部位标注见表1, 18S rRNA基因作为内参基因,图中数据为平均值±标准误,相对表达量差异显著(LSD法多重比对,P<0.05)。

    Figure  6.  Expressions of vitellogenin receptor gene of T. papillosa in tissues at developmental stages

    Note: a is VgR expressions at different developmental stages, and the comparison is based on nymph in different development stages.b is VgR expressions in different tissues, and the different tissues are compared on the basis of nymph antennae. Tissues abbreviations are shown in Table 1; 18S rRNA gene is internal reference gene used; data are mean±standard error; and relative expression is significantly different as determined by multiple comparison by LSD method at P<0.05.

    表  1  供试荔枝蝽组织

    Table  1.   Tissues of T. papillosa under study

    组织 Tissue名称 Name
    雌虫 Female insect TP_M
    雌虫卵巢 Female ovary TP_MO
    雌虫中肠 Female midgut TP_MM
    雌虫脂肪体 Female fat body TP_MF
    雄虫 Male insect TP_FM
    雄虫触角 Male antenna TP_FMA
    雄虫精巢 Male testis TP_FMT
    雄虫中肠 Male midgut TP_FMM
    雄虫脂肪体 Male fat body TP_FMF
    雄虫淋巴液 Male lymph TP_FMH
    若虫触角 Nymph antennae TP_AA
    若虫中肠 Nymph midgut TP_AM
    若虫脂肪体 Nymph fat body TP_AF
    若虫 Nymph TP_A
    下载: 导出CSV

    表  2  PCR扩增引物序列

    Table  2.   PCR primer sequences

    引物名 Primer name序列 Sequence
    Vg1-R-all ATGGCGTGGAGTACAGCCCTTCTC
    Vg1-F-all TCAGCTTGAAATACAGGCCTCTGG
    Vg2-R-all CATGTGCTGGTCAAGAACACTT
    Vg2-F-all TTACAAACTGGAAACACA
    Vg3-R-all ATGTGGACACAAATTTCACTG
    Vg3-F-all TTACAAACTGGAAACACATT
    VgR-R-all AGGCACCAAAGGCTTCCAGTTCG
    VgR-F-all TTACTCTCATCACTCCCATCACGG
    下载: 导出CSV

    表  3  PCR扩增引物序列

    Table  3.   qRT-PCR primer sequences

    引物名 Primer name序列 Sequence
    Vg1-R-RT TTTCGCCGCATCCTACGCCG
    Vg1-F- RT ACAGGACCTGCCGCCATCCT
    Vg2-R- RT CTGGGCCAGTTCCGGCTTGG
    Vg2-F- RT GCAGCCTTGACGAGCGCAGT
    Vg3-R- RT CGGTGCTGTGAGCTAAGGCGG
    Vg3-F- RT CGGCCCGGCCCTTGTTTCAA
    VgR-R- RT TGTTCCAATGCACCAGCGGCA
    VgR-F- RT GTCGCTTCCGTCAGCGCAGT
    下载: 导出CSV

    表  4  荔枝蝽VgVgRs序列分析

    Table  4.   Sequencing of T. papillosa Vg and VgRs

    名称
    Name
    序列长度
    Sequence
    length/bp
    ORF长度
    ORF
    length/bp
    编码氨基酸起始位点
    Coded amino
    acid start site/bp
    编码氨基酸长度
    Coded amino
    acid length/bp
    信号肽长度
    Signal peptide
    length/个
    Sec/SPIpI/Mw
    T. papi_Vg15 7645 541118-5 6581 846110.98686.53 / 209748.39
    T. papi_Vg26 2165 5146 200-6871 837180.92146.28/209455.11
    T. papi_Vg36 2785 5776 263-6871 858210.97217.89/208177.72
    T. papi_VgRs3 2393 20732-3 2381 068290.90334.96/119486.53
    下载: 导出CSV

    表  5  用于进化树分析的Vg基因序列

    Table  5.   Vg sequences for phylogenetic tree analysis

    序号
    Serial number
    缩写
    Abbreviations
    物种名称
    Species name
    分类地位
    Classification status
    学名
    Latin name
    基因ID
    Genebank NO.
    序列长度
    Sequence length/bp
    1A.aegy_UGALA_Vg埃及伊蚊双翅目,蚊科Aedes aegyptiAAU025486 504
    2A.luco_Vg1绿盲蝽半翅目,盲蝽科Apolygus lucorumJQ8671816 122
    3A.luco_Vg2绿盲蝽半翅目,盲蝽科Apolygus lucorumKC1362716 097
    4A.mell_Vg意大利蜜蜂膜翅目,蜜蜂科Apis melliferaNM_0010115785 441
    5A.rosa_Vg黄翅菜叶蜂膜翅目,叶蜂科Athalia rosaeAB0078505 783
    6B.germ_Vg德国小蠊蜚蠊目,蜚蠊科Blattella germanicaAJ0051155 749
    7B.Hypo_Vg小峰熊蜂膜翅目,蜜蜂科Bombus hypocritaGQ3407495 478
    8B.mori_Vg家蚕鳞翅目,蚕蛾科Bombyx moriNM_0010438445 734
    9B.taba_Q_VgQ型烟粉虱半翅目,粉虱科Bemisia tabaci biotype QGU3327226 552
    10B.taba_B_VgB型烟粉虱半翅目,粉虱科Bemisia tabaci biotype BGU3327206 474
    11C.livi_Vg黑肩绿盲蝽半翅目,盲蝽科Cyrtorhinus lividipennisKJ6529045 912
    12C.medi_Vg稻纵卷叶螟鳞翅目,螟蛾科Cnaphalocrocis medinalisJN4086985 779
    13C.sept_Vg大草蛉脉翅目,草蛉科Chrysopa septempunctataJX2866175 664
    14C.sine_Vg荔枝蒂蛀虫鳞翅目,细蛾科Conopomorpha sinensisMH5533775 430
    15C.supp_Vg二化螟鳞翅目,草螟蛾科Chilo suppressalisKT7249585 373
    16D.vari_Vg变异革蜱寄螨目,硬蜱科Dermacentor variabilisAY8852505 744
    17G.nigr_Vg油蝉半翅目,蝉科Graptopsaltria nigrofuscataAB0268486 205
    18G.pall_Vg大眼长蝽半翅目,长蝽科Geocoris pallidipennisKP6885875 667
    19H.armi_Vg棉铃虫鳞翅目,夜蛾科Helicoverpa armigeraJX5047065 271
    20H.axyr_Vg异色瓢虫鞘翅目,瓢甲科Harmonia axyridisKX4427185 403
    21L.deyr_Vg大田负蝽半翅目,土蝽科Lethocerus deyrolleiAB4253345 865
    22L.disp_Vg舞毒蛾鳞翅目,毒蛾科Lymantria disparU601865 579
    23L.stri_Vg1灰飞虱半翅目,飞虱科Laodelphax striatellaKC4695806 415
    24L.stri_Vg2灰飞虱半翅目,飞虱科Laodelphax striatellaKC4695816 265
    25N. luge_Vg褐飞虱半翅目,飞虱科Nilaparvata lugensAB3538566 314
    26O.corn_Vg角额壁蜂膜翅目,切叶蜂科Osmia cornifronsKM3875615 477
    27P.amer_Vg美洲蟑螂蜚蠊目,蜚蠊科Periplaneta americanaAB0348045 854
    28P.nipp_Vg日本黑瘤姬蜂膜翅目,姬蜂科Pimpla nipponicaAF0267895 604
    29R.clav_Vg豆类点蜂缘蝽半翅目,缘蝽科Riptortus clavatusRCU972775 736
    30S.exig_Vg甜菜夜蛾鳞翅目,夜蛾科Spodoptera exiguaKT5994345 286
    31S.invi_Vg红火蚁膜翅目,蚁科Solenopsis invictaAF5125205 638
    32S.litu_Vg斜纹夜蛾鳞翅目,夜蛾科Spodoptera lituraEU0953345 247
    33T.pui_Vg蒲氏钩蝠蛾鳞翅目,蝙蝠蛾科Thitarodes puiMF6225385 566
    34Z.atra_Vg大麦虫鞘翅目,拟步甲科Zophobas atratusMK8902115 457
    下载: 导出CSV

    表  6  用于进化树分析的VgRs基因序列

    Table  6.   VgRs sequences for phylogenetic tree analysis

    序号
    Serial number
    缩写
    Abbreviations
    物种名称
    Species name
    分类地位
    Classification status
    学名
    Latin name
    基因ID
    Genebank NO.
    序列长度
    Sequence length/bp
    1 S.invi_VgR 红火蚁 膜翅目,蚁科 Solenopsis invicta NM_001304596.1 5 764
    2 B.mori_VgR 家蚕 鳞翅目,蚕蛾科 Bombyx mori NM_001197251.1 5 746
    3 A.aegy_VgR 埃及伊蚊 双翅目,蚊科 Aedes aegypti L77800.1 5 544
    4 P.amer_VgR 美洲大蠊 蜚蠊目,蜚蠊科 Periplaneta americana AB077047.2 5 722
    5 B.germ_VgR 德国小蠊 蜚蠊目,蜚蠊科 Blattella germanica AM050637.1 5 768
    6 T.cinn_VgR 棉花红蜘蛛 蜱螨目,叶螨科 Tetranychus cinnabarinus KR090060.1 5 559
    7 B.dors_VgR 桔小实蝇 双翅目,实蝇科 Bactrocera dorsalis JX469118.1 6 595
    8 D.mela_VgR 黑腹果蝇 双翅目,果蝇科 Drosophila melanogaster U13637.1 6 254
    9 S.invi_VgR 红火蚁 膜翅目,蚁科 Solenopsis invicta AY262832.1 5 764
    10 L.ento_VgR 嗜虫书虱 啮虫目,虱啮科 Liposcelis entomophila MN398904.1 5 916
    11 S.furc_VgR 白背飞虱 半翅目,飞虱科 Sogatella furcifera MN327568.1 5 796
    12 B.lant_VgR 兰州熊蜂 膜翅目,蜜蜂科 Bombus lantschouensis MN217253.1 5 519
    13 C.cupp_VgR 二化螟 鳞翅目,草螟蛾科 Chilo suppressalis MN227162.1 5 484
    14 C.sine_VgR 荔枝蒂蛀虫 鳞翅目,细蛾科 Conopomorpha sinensis KX987145.1 5 424
    15 L.stri_VgR 灰飞虱 半翅目,飞虱科 Laodelphax striatella MH347273.1 6 065
    16 C.bowr_VgR 大猿叶虫 鞘翅目,叶甲科 Colaphellus bowringi MH104867.1 5 774
    17 B.taba_VgR 烟粉虱 半翅目,粉虱科 Bemisia tabaci complex sp. Asia KR818562.2 5 430
    18 S.litu_VgR 斜纹夜蛾 鳞翅目,夜蛾科 Spodoptera litura GU983858.1 5 370
    19 P.citr_VgR 柑橘全爪螨 蜱螨目,叶螨科 Panonychus citri KC978894.1 5 676
    20 H.armi_VgR 棉铃虫 鳞翅目,夜蛾科 Helicoverpa armigera KC181922.2 5 891
    21 A.pern_VgR 姬透目天蚕蛾 鳞翅目,天蚕蛾科 Antheraea pernyi JN003583.1 5 847
    22 N.luge_VgR 褐飞虱 半翅目,飞虱科 Nilaparvata lugens GU723297.1 6 174
    23 C.ital_VgR 意大利蝗 直翅目,蝗科 Calliptamus italicus MK358118.1 5 589
    24 S.exig_VgR 甜菜夜蛾 鳞翅目,夜蛾科 Spodoptera exigua KT899978.1 5 445
    25 O.furn_VgR 亚洲玉米螟 鳞翅目,螟蛾科 Ostrinia furnacalis MN058042.1 6 289
    26 P.xylo_VgR 小菜蛾 鳞翅目,菜蛾科 Plutella xylostella MN044389.1 5 418
    27 M.vitr_VgR 豆野螟 鳞翅目,螟蛾科 Maruca vitrata MG799569.1 5 397
    28 D.virg_VgR 玉米根萤叶甲 鞘翅目,叶甲科 Diabrotica virgifera KY373243.1 5 612
    下载: 导出CSV
  • [1] 陈景耀, 柯冲, 陈菁瑛. 荔枝鬼帚病的初步调查及传病试验 [J]. 植物病理学报, 1992(1):26.

    CHEN J Y, KE C, CHEN J Y. A preliminary study on the incidence and transmission of litchi witches broom [J]. Acta Phytopathologica Sinica, 1992(1): 26.(in Chinese)
    [2] 许长藩, 陈景耀, 夏雨华, 等. 荔枝蝽传播龙眼鬼帚病的研究 [J]. 植物病理学报, 1994, 2(2):60−64.

    XU C F, CHEN J Y, XIA Y H, et al. On transmission of Longyan witches broom by Tessaratoma papillosa(Drury) [J]. Acta Phytopathologica Sinica, 1994, 2(2): 60−64.(in Chinese)
    [3] 黎荣欣, 赵冬香, 王玉洁, 等. 荔枝蝽防治研究进展 [J]. 热带作物学报, 2013, 34(1):195−200.

    LI R X, ZHAO D X, WANG Y J, et al. Research progress of controlling Tessaratoma papillosa(Drury) [J]. Chinese Journal of Tropical Crops, 2013, 34(1): 195−200.(in Chinese)
    [4] AMDAM G V, PAGE JR R E, FONDRK M K, et al. Hormone response to bidirectional selection on social behavior [J]. Evolution & Development, 2010, 12(5): 428−436.
    [5] 戈林泉, 吴进才. 昆虫卵黄蛋白及其激素调控的研究进展 [J]. 昆虫知识, 2010, 47(2):236−246.

    GE L Q, WU J C. Research progress in insect vitellin and its hormone regulation [J]. Chinese Bulletin of Entomology, 2010, 47(2): 236−246.(in Chinese)
    [6] MATOZZO V, GAGNÉ F, MARIN M G, et al. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: A review [J]. Environment International, 2008, 34(4): 531−545. doi: 10.1016/j.envint.2007.09.008
    [7] TUFAIL M, TAKEDA M. Molecular characteristics of insect vitellogenins [J]. Journal of Insect Physiology, 2008, 54(12): 1447−1458. doi: 10.1016/j.jinsphys.2008.08.007
    [8] TUFAIL M, TAKEDA M. Insect vitellogenin/lipophorin receptors: Molecular structures, role in oogenesis, and regulatory mechanisms [J]. Journal of Insect Physiology, 2009, 55(2): 87−103. doi: 10.1016/j.jinsphys.2009.01.009
    [9] TUFAIL M, TAKEDA M. Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis [J]. Insect Molecular Biology, 2005, 14(4): 389−401. doi: 10.1111/j.1365-2583.2005.00570.x
    [10] CIUDAD L, PIULACHS M D, BELLÉS X. Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant [J]. The FEBS Journal, 2006, 273(2): 325−335. doi: 10.1111/j.1742-4658.2005.05066.x
    [11] LIU Q N, ZHU B J, LIU C L, et al. Characterization of vitellogenin receptor (VgR) from the Chinese oak silkworm, Antheraea pernyi [J]. Bulletin of Insectology, 2011, 64(2): 167−174.
    [12] QIAN C, FU W W, WEI G Q, et al. Identification and expression analysis of vitellogenin receptor from the wild silkworm, Bombyx mandarina [J]. Archives of Insect Biochemistry and Physiology, 2015, 89(4): 181−192. doi: 10.1002/arch.21235
    [13] WEINSTOCK G M, ROBINSON G E, GIBBS R A, et al. Insights into social insects from the genome of the honeybee Apis mellifera [J]. Nature, 2006, 443(7114): 931−949. doi: 10.1038/nature05260
    [14] CHO K H, RAIKHEL A S. Organization and developmental expression of the mosquito vitellogenin receptor gene [J]. Insect Molecular Biology, 2001, 10(5): 465−474. doi: 10.1046/j.0962-1075.2001.00285.x
    [15] LU K, SHU Y, ZHOU J, et al. Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål) [J]. Journal of Insect Physiology, 2015, 73: 20−29. doi: 10.1016/j.jinsphys.2015.01.007
    [16] BROWN M S, GOLDSTEIN J L. A receptor‐mediated pathway for cholesterol homeostasis (Nobel lecture) [J]. Angewandte Chemie International Edition in English, 1986, 25(7): 583−602. doi: 10.1002/anie.198605833
    [17] SAPPINGTON T W, RAIKHEL A S. Molecular characteristics of insect vitellogenins and vitellogenin receptors [J]. Insect Biochemistry and Molecular Biology, 1998, 28(5-6): 277−300. doi: 10.1016/S0965-1748(97)00110-0
    [18] TUFAIL M, TAKEDA M. Vitellogenin of the cockroach, Leucophaea maderae: Nucleotide sequence, structure and analysis of processing in the fat body and oocytes [J]. Insect Biochemistry and Molecular Biology, 2002, 32(11): 1469−1476. doi: 10.1016/S0965-1748(02)00067-X
    [19] HIRAI M, WATANABE D, KIYOTA A, et al. Nucleotide sequence of vitellogenin mRNA in the bean bug, Riptortus clavatus: Analysis of processing in the fat body and ovary [J]. Insect Biochemistry and Molecular Biology, 1998, 28(8): 537−547. doi: 10.1016/S0965-1748(98)00052-6
    [20] RAIKHEL A S, DHADIALLA T S. Accumulation of yolk proteins in insect oocytes [J]. Annual Review of Entomology, 1992, 37: 217−251. doi: 10.1146/annurev.en.37.010192.001245
    [21] SNIGIREVSKAYA E S, RAIKHEL A S. Receptor-mediated endocytosis of yolk proteins in insect oocytes[J]. Progress in vitellogenesis[J]. Reproductive biology of invertebrates, 2005, 12(Part B): 199-228.
    [22] ROEHRKASTEN A, FERENZ H J. Role of the lysine and arginine residues of vitellogenin in high affinity binding to vitellogenin receptors in locust oocyte membranes [J]. Biochimica et Biophysica Acta, 1992, 1133(2): 160−166. doi: 10.1016/0167-4889(92)90064-I
    [23] 张维球, 刘秀琼. 荔枝蝽象血淋巴物理性状及“还原能”季节性变化的研究 [J]. 昆虫学报, 1973, 16(1):15−24.

    ZHANG W Q, LIU X Q. Studies on the seasonal changes of the physical properties and the reducing power of the haemolymph of the lychee stinkbug, Tessaratoma papillsoa drury (Hemiptera: Pentatomidae) [J]. Acta entomologica sinica, 1973, 16(1): 15−24.(in Chinese)
    [24] 佘春仁, 潘蓉英, 古德祥, 等. 利用平腹小蜂防治荔枝蝽若干技术问题探讨 [J]. 福建农业大学学报, 1997, 26(4):441−445.

    SHE C R, PAN R Y, GU D X, et al. Several technological problems of applying Anastatus sp. to control Tessaratoma papillosa [J]. Journal of Fujian Agricultural University, 1997, 26(4): 441−445.(in Chinese)
    [25] 佘春仁, 潘蓉英. 荔枝蝽的系统解剖及其在测报上的应用 [J]. 福建农学院学报, 1993(1):59−63.

    SHE C R, PAN R Y. Systematic dissection for forecasting the pest Tessaratoma papillosa Drury [J]. Journal of Fujian Agricultural college, 1993(1): 59−63.(in Chinese)
    [26] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [27] TUFAIL M, NAGABA Y, ELGENDY A M, et al. Regulation of vitellogenin genes in insects [J]. Entomological Science, 2014, 17(3): 269−282. doi: 10.1016/j.jinsphys.2008.08.007
    [28] UPADHYAY S K, SINGH H, DIXIT S, et al. Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci [J]. PLoS One, 2016, 11(5): e0155306. doi: 10.1371/journal.pone.0155306
    [29] HU K, TIAN P, TANG Y, et al. Molecular characterization of vitellogenin and its receptor in Sogatella furcifera, and their function in oocyte maturation [J]. Frontiers in Physiology, 2019, 10: 1532. doi: 10.3389/fphys.2019.01532
    [30] ROBERTSON J L, PREISLER H K. Pesticide bioassays with arthropods[M]. CRC Press, 1992: 127.
    [31] THOMPSON J R, BANASZAK L J. Lipid-protein interactions in lipovitellin [J]. Biochemistry, 2002, 41(30): 9398−9409. doi: 10.1021/bi025674w
    [32] HUSAIN M, RASOOL K G, TUFAIL M, et al. RNAi-mediated silencing of vitellogenin gene curtails oogenesis in the almond moth Cadra cautella [J]. PloS one, 2021, 16(2): e0245928. doi: 10.1371/journal.pone.0245928
    [33] MORANDIN C, HAVUKAINEN H, KULMUNI J, et al. Not only for egg yolk—functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins [J]. Molecular Biology and Evolution, 2014, 31(8): 2181−2193. doi: 10.1093/molbev/msu171
    [34] PIULACHS M D, GUIDUGLI K R, BARCHUK A R, et al. The vitellogenin of the honey bee, Apis mellifera: Structural analysis of the cDNA and expression studies [J]. Insect Biochemistry and Molecular Biology, 2003, 33(4): 459−465. doi: 10.1016/S0965-1748(03)00021-3
    [35] CORONA M, LIBBRECHT R, WURM Y, et al. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus [J]. PLoS Genetics, 2013, 9(8): e1003730. doi: 10.1371/journal.pgen.1003730
    [36] YANO K, SAKURAI M T, WATABE S, et al. Structure and expression of mRNA for vitellogenin in Bombyx mori [J]. Biochimica et Biophysica Acta, 1994, 1218(1): 1−10. doi: 10.1016/0167-4781(94)90094-9
    [37] MARTÍN D, PIULACHS M D, COMAS D, et al. Isolation and sequence of a partial vitellogenin cDNA from the cockroach, Blattella germanica (L.) (Dictyoptera, Blattellidae), and characterization of the vitellogenin gene expression [J]. Archives of Insect Biochemistry and Physiology, 1998, 38(3): 137−146. doi: 10.1002/(SICI)1520-6327(1998)38:3<137::AID-ARCH4>3.0.CO;2-P
    [38] TUFAIL M, HATAKEYAMA M, TAKEDA M. Molecular evidence for two vitellogenin genes and processing of vitellogenins in the American cockroach, Periplaneta americana [J]. Archives of Insect Biochemistry and Physiology, 2001, 48(2): 72−80. doi: 10.1002/arch.1059
    [39] SHEN Y, CHEN Y Z, LOU Y H, et al. Vitellogenin and vitellogenin-like genes in the brown planthopper [J]. Frontiers in Physiology, 2019, 10: 1181. doi: 10.3389/fphys.2019.01181
    [40] ROMANS P, TU Z, KE Z, et al. Analysis of a vitellogenin gene of the mosquito, Aedes aegypti and comparisons to vitellogenins from other organisms [J]. Insect Biochemistry and Molecular Biology, 1995, 25(8): 939−958. doi: 10.1016/0965-1748(95)00037-V
    [41] SMITH C D, ZIMIN A, HOLT C, et al. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile) [J]. Proceedings of the National Academy of Sciences, 2011, 108(14): 5673−5678. doi: 10.1073/pnas.1008617108
    [42] COLETTA A, PINNEY J W, SOLÍS D Y W, et al. Low-complexity regions within protein sequences have position-dependent roles [J]. BMC Systems Biology, 2010, 4(1): 1−13. doi: 10.1186/1752-0509-4-1
    [43] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes [J]. Science, 2000, 290(5494): 1151−1155. doi: 10.1126/science.290.5494.1151
    [44] CONG L, YANG W J, JIANG X Z, et al. The essential role of vitellogenin receptor in ovary development and vitellogenin uptake in Bactrocera dorsalis (hendel) [J]. International Journal of Molecular Sciences, 2015, 16(8): 18368−18383. doi: 10.3390/ijms160818368
    [45] ZHANG W, MA L, XIAO H, et al. Molecular characterization and function analysis of the vitellogenin receptor from the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae) [J]. PloS ONE, 2016, 11(5): e0155785. doi: 10.1371/journal.pone.0155785
    [46] YAO Q, XU S, DONG Y Z, et al. Characterization of vitellogenin and vitellogenin receptor of Conopomorpha sinensis Bradley and their responses to sublethal concentrations of insecticide [J]. Frontiers in Physiology, 2018, 9: 1250. doi: 10.3389/fphys.2018.01250
    [47] SAYAH F, FAYET C, IDAOMAR M, et al. Effect of azadirachtin on vitellogenesis of Labidura riparia (Insect Dermaptera) [J]. Tissue and Cell, 1996, 28(6): 741−749. doi: 10.1016/S0040-8166(96)80077-2
    [48] AMIR M. Histopathological effect of some toxicants on the female reproductive system of Sarcophaga ruficornis Fabricius (Diptera: Sarcophagidae) [J]. Cibtech Journal of Zoology ISSN, 2014, 3(2): 2319−38831.
    [49] ZHOU C, YANG X B, YANG H, et al. Effects of sublethal concentrations of insecticides on the fecundity of Sogatella furcifera (Hemiptera: Delphacidae) via the regulation of vitellogenin and its receptor [J]. Journal of Insect Science, 2020, 20(5): 14. doi: 10.1093/jisesa/ieaa099
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  216
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-05-05
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-28

目录

    /

    返回文章
    返回