• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一株溶磷真菌的鉴定及其促生特性研究

李静 艾加敏 余天飞 边丹 郑超超 郭旻皓 邓振山

李静,艾加敏,余天飞,等. 一株溶磷真菌的鉴定及其促生特性研究 [J]. 福建农业学报,2021,36(10):1224−1230 doi: 10.19303/j.issn.1008-0384.2021.10.015
引用本文: 李静,艾加敏,余天飞,等. 一株溶磷真菌的鉴定及其促生特性研究 [J]. 福建农业学报,2021,36(10):1224−1230 doi: 10.19303/j.issn.1008-0384.2021.10.015
LI J, AI J M, YU T F, et al. Identification and Growth-promoting Effect of a Phosphate-solubilizing Fungus on Wheat Seedlings [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1224−1230 doi: 10.19303/j.issn.1008-0384.2021.10.015
Citation: LI J, AI J M, YU T F, et al. Identification and Growth-promoting Effect of a Phosphate-solubilizing Fungus on Wheat Seedlings [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1224−1230 doi: 10.19303/j.issn.1008-0384.2021.10.015

一株溶磷真菌的鉴定及其促生特性研究

doi: 10.19303/j.issn.1008-0384.2021.10.015
基金项目: 国家自然科学基金项目(32160003);陕西省县域重点科技项目(2018XY-14)
详细信息
    作者简介:

    李静(1997−),女,硕士研究生,主要从事资源与环境微生物方面研究(E-mail:18591698780@163.com

    通讯作者:

    邓振山(1969−),男,博士,教授,主要从事微生物资源与利用和环境微生物学研究(E-mail:zhenshandeng214@163.com

  • 中图分类号: S 182

Identification and Growth-promoting Effect of a Phosphate-solubilizing Fungus on Wheat Seedlings

  • 摘要:   目的  从小麦田土壤中分离筛选出一株具有溶磷及促生特性的真菌菌株,为微生物肥料的开发与利用提供种质资源。  方法  本试验利用无机磷培养基从小麦田土壤中筛选得到一株具有较强溶磷能力的真菌菌株R3,通过形态学特征和ITS序列分析,对菌株进行分类学鉴定;采用液体培养测定菌株对Ca3(PO42、AlPO4和FePO4等3种不同磷源的溶解能力;并通过盆栽试验测定其对小麦的促生效应。  结果  经鉴定菌株R3归属于产红青霉(Penicillium rubens)。菌株R3在无机磷培养基上的溶磷圈直径D平均值为27.99 mm,菌落直径d平均值为19.26 mm,D/d为1.45。菌株R3对Ca3(PO42和AlPO4的溶解能力在第4 天时最高,分别为328.79 mg·L−1和95.99 mg·L−1;对FePO4的溶解量在第5 天时达到最高值,为75.39 mg·L−1。菌株R3对不同磷源培养基pH的影响总体呈先下降后平稳的趋势。盆栽试验结果表明,与未接菌的对照组相比,接种R3菌液后小麦在株高、根长、鲜重和叶绿素含量方面分别提高了18.23%~35.65%、27.63%~50.44%、37.99%~50.94%和9.59%~19.57%。  结论  溶磷真菌R3对小麦生长有显著促进作用,可为进一步构建促生菌菌群提供良好的种质资源。
  • 图  1  真菌菌株R3溶磷圈

    注:培养基中Ca3(PO42质量浓度为5 g·L−1

    Figure  1.  Phosphate dissolving ring on medium by R3

    Note: Concentration of Ca3(PO4)2 in medium was 5 g·L−1.

    图  2  菌株R3的菌落培养特征(4 d PDA培养结果)

    注:A为R3正面菌落形态;B为R3背面菌落形态。

    Figure  2.  Colony characteristics of cultured R3 on PDA for 4 days

    Note: A: front-view of R3 colony; B: back-view of R3 colony on medium.   

    图  3  菌株R3的菌落培养特征(8 d PDA培养结果)

    注:A为R3正面菌落形态;B为R3背面菌落形态。

    Figure  3.  Colony characteristics of cultured R3 on PDA for 8 days

    Note: A: front-view of R3 colony; B: back-view of R3 colony on medium.   

    图  4  菌株R3形态特征(×400)

    Figure  4.  Morphological characteristics of strain R3(×400)

    图  5  基于ITS序列同源性构建菌株R3的系统发育树

    Figure  5.  Phylogenetic tree of R3 constructed based on homology of ITS sequence

    图  6  菌株R3的溶磷量及pH变化

    注:A为菌株R3在不同磷源条件下的溶磷量;B为菌株R3在不同磷源条件下的pH。

    Figure  6.  Phosphorous solubilization by R3 with changing medium pH

    Note: A: solubilization of R3 on different phosphorus sources; B: pH of R3 medium containing different phosphorus sources.

    表  1  真菌菌株R3菌处理的小麦幼苗的农艺性状

    Table  1.   Agronomic traits of wheat seedlings in presence of growth-promoting R3

    处理 Treatments株高 Plant height/cm根长 Root length/cm鲜重 Plant fresh weight/g叶绿素含量 Chlorophyll content/(mg·g−1
    27.12±1.40 a10.23±1.07 a4.03±0.15 a36.23±1.82 a
    23.73±1.66 b8.13±1.46 bc3.85±0.44 a34.27±1.9 ab
    22.70±1.73 bc8.50±0.72 b3.94±0.48 a34.37±1.56 ab
    20.03±1.97 cd6.80±0.53 cd2.67±0.57 b30.3±1.47 c
    19.90±2.01 cd6.37±0.45 d2.79±0.17 b31.27±1.92 bc
    19.20±1.21 d6.40±0.7 d2.78±0.3 b30.27±2.94 c
    注:表中数值为各处理的平均值±标准差。同列数据后不同字母表示差异显著(P<0.05)。
    Note: The values in the table are the average±standard deviation of each treatment. Date followed different small letters within column indicate significant difference at 0.05 level.
    下载: 导出CSV
  • [1] 韦杏花. 一株解磷菌的筛选及其培养条件优化[D]. 杭州: 浙江大学, 2015.

    WEI X H. Screening of a phosphate dissolving bacteria strain and it's culture conditions optimization[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [2] KUCEY R M N, JANZEN H H, LEGGETT M E. Microbially mediated increases in plant-available phosphorus [J]. Advances in Agronomy, 1989, 42: 199−228.
    [3] 林启美, 赵海英, 赵小蓉. 4株溶磷细菌和真菌溶解磷矿粉的特性 [J]. 微生物学通报, 2002, 29(6):24−28. doi: 10.3969/j.issn.0253-2654.2002.06.007

    LIN Q M, ZHAO H Y, ZHAO X R. The characteristics of solubilizing rock phosphate by four isolates of bacteria and fungi [J]. Microbiology, 2002, 29(6): 24−28.(in Chinese) doi: 10.3969/j.issn.0253-2654.2002.06.007
    [4] 江丽华, 刘兆辉, 石璟, 等. 真菌F2的解磷能力及其生长动态研究 [J]. 中国农学通报, 2009, 25(1):42−46.

    JIANG L H, LIU Z H, SHI J, et al. Solubilization capacity of insoluble phosphates and it`s growth of biomass by the phosphate fungi (F2) [J]. Chinese Agricultural Science Bulletin, 2009, 25(1): 42−46.(in Chinese)
    [5] CHUNG H, PARK M, MADHAIYAN M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea [J]. Soil Biology and Biochemistry, 2005, 37(10): 1970−1974. doi: 10.1016/j.soilbio.2005.02.025
    [6] GHOSH R, BARMAN S, MUKHERJEE R, et al. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India [J]. Microbiological Research, 2016, 183: 80−91. doi: 10.1016/j.micres.2015.11.011
    [7] DELVASTO P, VALVERDE A, BALLESTER A, et al. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures [J]. Soil Biology and Biochemistry, 2006, 38(9): 2645−2654. doi: 10.1016/j.soilbio.2006.03.020
    [8] 许昌超, 张俊涛, 叶少萍, 等. 土壤中一株溶磷青霉菌的分离鉴定及其应用效果研究 [J]. 中国土壤与肥料, 2020(6):272−278. doi: 10.11838/sfsc.1673-6257.19484

    XU C C, ZHANG J T, YE S P, et al. Isolation and the plant growth-promoting capacity characterization of a Penicillium strain derived from soil [J]. Soil and Fertilizer Sciences in China, 2020(6): 272−278.(in Chinese) doi: 10.11838/sfsc.1673-6257.19484
    [9] 朱德旋, 杜春梅, 董锡文, 等. 一株寒地高效解无机磷细菌的分离鉴定及拮抗作用 [J]. 微生物学报, 2020, 60(8):1672−1682.

    ZHU D X, DU C M, DONG X W, et al. Identification and antagonism activity of an inorganic phosphorus-dissolving bacterial strain isolated from cold region [J]. Acta Microbiologica Sinica, 2020, 60(8): 1672−1682.(in Chinese)
    [10] DA SILVA A V, DE OLIVEIRA A J, TANABE I S B, et al. Antarctic lichens as a source of phosphate-solubilizing bacteria [J]. Extremophiles, 2021, 25(2): 181−191. doi: 10.1007/s00792-021-01220-5
    [11] 李云飞, 华陈意, 宗凯, 等. 一株分离自水稻种子的真菌的鉴定及系统进化分析 [J]. 农学学报, 2021, 11(3):36−40. doi: 10.11923/j.issn.2095-4050.cjas20190500034

    LI Y F, HUA C Y, ZONG K, et al. A fungus from rice: Species identification and phylogenetic analysis [J]. Journal of Agriculture, 2021, 11(3): 36−40.(in Chinese) doi: 10.11923/j.issn.2095-4050.cjas20190500034
    [12] 何迪, 耿丽平, 郭佳, 等. 草酸青霉菌HB1溶磷能力及作用机制 [J]. 农业工程学报, 2020, 36(2):255−265. doi: 10.11975/j.issn.1002-6819.2020.02.030

    HE D, GENG L P, GUO J, et al. Ability and mechanism of Penicillium oxalicum HB1 solubilizing phosphates [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 255−265.(in Chinese) doi: 10.11975/j.issn.1002-6819.2020.02.030
    [13] 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究 [J]. 中国农业科学, 2019, 52(9):1574−1586. doi: 10.3864/j.issn.0578-1752.2019.09.009

    GONG A D, ZHU Z Y, LU Y N, et al. Functional analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth-promoting activity of maize [J]. Scientia Agricultura Sinica, 2019, 52(9): 1574−1586.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.09.009
    [14] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979.
    [15] 张婧, 刘广娜, 左蔚琳. 土壤微生物基因组DNA不同提取方法的比较及PCR扩增体系的建立 [J]. 吉林农业, 2018(16):55−56.

    ZHANG J, LIU G N, ZUO W L. Comparison of different extraction methods of soil microbial genomic DNA and establishment of PCR amplification system [J]. Agriculture of Jilin, 2018(16): 55−56.(in Chinese)
    [16] 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用 [J]. 应用生态学报, 2020, 31(9):2923−2934.

    LYU J, YU C. Screening and identification of an efficient phosphate-solubilizing Burkholderia sp. and its growth-promoting effect on Pinus massoniana seedling [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2923−2934.(in Chinese)
    [17] 张磊, 叶大柠, 朱焱, 等. 10株蜃楼弗朗西斯菌的鉴定与特征分析 [J]. 临床检验杂志, 2017, 35(4):271−276.

    ZHANG L, YE D N, ZHU Y, et al. Identification and characterization of 10 Francisella philomiragia strains [J]. Chinese Journal of Clinical Laboratory Science, 2017, 35(4): 271−276.(in Chinese)
    [18] 许昌超, 郑富海, 李铤, 等. 土壤中一株溶磷菌的筛选和溶磷能力初探 [J]. 安徽大学学报(自然科学版), 2019, 43(5):103−108.

    XU C C, ZHENG F H, LI T, et al. Isolation and solubilization capacity characterization of a phosphate-solubilizing strain derived from soil [J]. Journal of Anhui University (Natural Science Edition), 2019, 43(5): 103−108.(in Chinese)
    [19] 邓振山, 陈凯凯, 李静, 等. 巨菌草根部促生菌的筛选及其促生效应 [J]. 广西植物, 2020, 40(9):1323−1331. doi: 10.11931/guihaia.gxzw201904026

    DENG Z S, CHEN K K, LI J, et al. Screening of growth-promoting bacteria associated with Pennisetum sinese root and their abilities of growth-promoting effect [J]. Guihaia, 2020, 40(9): 1323−1331.(in Chinese) doi: 10.11931/guihaia.gxzw201904026
    [20] 张健. 低磷胁迫下草酸青霉菌BK溶磷的分子机制[D]. 大连: 大连理工大学, 2014.

    ZHANG J. Molecular mechanism of phosphate solubilization to phosphate deficient stress in Penicillium oxalicum BK[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
    [21] EFTHYMIOU A, GRØNLUND M, MÜLLER-STÖVER D S, et al. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains [J]. Soil Biology and Biochemistry, 2018, 116: 139−147. doi: 10.1016/j.soilbio.2017.10.006
    [22] GÓMEZ-MUÑOZ B, JENSEN L S, NEERGAARD A, et al. Effects of Penicillium bilaii on maize growth are mediated by available phosphorus [J]. Plant and Soil, 2018, 431(1/2): 159−173.
    [23] 赖鉴添, 杨婷, 史发超, 等. 蔗叶堆肥中一株泡盛曲霉溶磷能力的鉴定及其对辣椒的促生效果 [J]. 微生物学报, 2021, 61(1):77−91.

    LAI J T, YANG T, SHI F C, et al. A phosphorus-dissolving Aspergillus awamori strain from sugarcane leaf compost for growth promotion of pepper [J]. Acta Microbiologica Sinica, 2021, 61(1): 77−91.(in Chinese)
    [24] 赵龙飞, 徐亚军, 曹冬建, 等. 溶磷性大豆根瘤内生菌的筛选、抗性及系统发育和促生 [J]. 生态学报, 2015, 35(13):4425−4435.

    ZHAO L F, XU Y J, CAO D J, et al. Screening, resistance, phylogeny and growth promoting of phosphorus solubilizing bacteria isolated from soybean root nodules [J]. Acta Ecologica Sinica, 2015, 35(13): 4425−4435.(in Chinese)
    [25] 李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性 [J]. 应用生态学报, 2019, 30(7):2384−2392.

    LI D D, SHANG S H, HAN W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus [J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2384−2392.(in Chinese)
    [26] 王丹, 詹婧, 孙庆业. 出芽短梗霉F4的溶磷能力及机理 [J]. 应用生态学报, 2014, 25(7):2079−2084.

    WANG D, ZHAN J, SUN Q Y. Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism [J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2079−2084.(in Chinese)
    [27] 江红梅, 殷中伟, 史发超, 等. 一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果 [J]. 植物营养与肥料学报, 2018, 24(3):728−742. doi: 10.11674/zwyf.17468

    JIANG H M, YIN Z W, SHI F C, et al. Isolation and functional evaluation of phosphate-solubilizing fungi with salt-tolerant characteristics [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 728−742.(in Chinese) doi: 10.11674/zwyf.17468
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  133
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-08-08
  • 网络出版日期:  2021-10-23
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回