• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1

蒋家焕 朱永生 陈丽萍 郑燕梅 蔡秋华 谢华安 王爱荣 张建福

蒋家焕,朱永生,陈丽萍,等. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1 [J]. 福建农业学报,2022,37(2):131−137 doi: 10.19303/j.issn.1008-0384.2022.002.001
引用本文: 蒋家焕,朱永生,陈丽萍,等. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1 [J]. 福建农业学报,2022,37(2):131−137 doi: 10.19303/j.issn.1008-0384.2022.002.001
JIANG J H, ZHU Y S, CHEN L P, et al. Mapping of Early Senescence-related OsBRCA1 in Rice by BSA-seq Technique [J]. Fujian Journal of Agricultural Sciences,2022,37(2):131−137 doi: 10.19303/j.issn.1008-0384.2022.002.001
Citation: JIANG J H, ZHU Y S, CHEN L P, et al. Mapping of Early Senescence-related OsBRCA1 in Rice by BSA-seq Technique [J]. Fujian Journal of Agricultural Sciences,2022,37(2):131−137 doi: 10.19303/j.issn.1008-0384.2022.002.001

利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1

doi: 10.19303/j.issn.1008-0384.2022.002.001
基金项目: 福建省自然科学基金项目(2018J01039、2020J011352)
详细信息
    作者简介:

    蒋家焕(1972−),男,副研究员,主要从事水稻遗传育种研究(E-mail:zysfaas@qq.com

    通讯作者:

    张建福(1971−),男,研究员,博士生导师,主要从事水稻分子育种与分子生物学研究(E-mail:jianfzhang@163.com

  • 中图分类号: S 511

Mapping of Early Senescence-related OsBRCA1 in Rice by BSA-seq Technique

  • 摘要:   目的  水稻早衰突变体是研究水稻衰老机制的良好载体。定位和克隆水稻早衰相关基因,有助于理解水稻早衰的遗传规律和分子机制,为相关基因的作用机制研究奠定基础。  方法  用EMS化学诱变处理粳稻云引,获得一个稳定遗传的早衰突变体w14,与日本晴杂交构建F2分离群体,并在群体中各选择100个隐性单株和显性单株的DNA等量混合,利用BSA-seq分析两个DNA池之间的差异位点,定位水稻早衰相关基因。  结果  突变体w14的早衰表型受单隐性基因控制,对两个DNA池测序结果进行单基因定位和突变基因的鉴定,发现单基因主峰位于Chr3,候选区间为 Chr3:27.5~29.5 Mb,进一步在目标区域内找到2个符合条件的候选因果变异。  结论  候选基因 LOC_Os03g49210突变位点是由野生型的C突变为T,且该突变位于候选基因的第2 外显子上,属于错义突变,造成了该基因编码的第20 个氨基酸由T(苏氨酸)变成I(异亮氨酸),从而可能导致了基因功能的改变,因此,将该基因定为本研究的候选基因,因与人类BRCA1同源,命名为 OsBRCA1
  • 图  1  突变体 w14 测序数据的质量评估

    Figure  1.  Statistical analysis on sequencing data and quality on w14

    图  2  基因池间等位频率分析寻找目标基因的主峰位置

    注:A:隐性纯合池;B:显性杂合池;C:两个混池之间的差异;D:目标基因的基因主峰。

    Figure  2.  Allele frequency between gene pools for locating main peak in target gene

    Note: A: recessive homozygous pool; B: dominant heterozygous pool; C: difference between two mixed pools; D: main peak in target gene.

    图  3  测序结果中3号染色体的AF及AFD拟合曲线

    Figure  3.  AF and AFD fitting curves of Chr 3 in sequencing

    图  4  OsBRCA1在野生型和突变体w14的序列比对分析

    注:A:基因组序列比对结果;B:氨基酸序列比对结果。

    Figure  4.  Sequence alignment between OsBRCA1 in wild-type and mutant w14

    Note: A: genome sequence alignment; B: amino acid sequence alignment.

    表  1  用于 OsBRCA1基因组全长分段扩增的引物序列

    Table  1.   Primer sequences for genome full-length fragment amplification on OsBRCA1

    序号
    Number
    标记
    Marker
    上游引物
    Forward primer(5′-3′)
    下游引物
    Reverse primer(5′-3′)
    149210-1AATACCATATCGCCGTTTTCTTAACTTTTCCATCACATCGTTCTAA
    249210-2TTGCCCGCATAATGTGACTGAAGACTGGAGACTTGGGAGGTG
    349210-3TTTGCTATGCTGAACTCCCGTCCCTTCCACCTTCTTCTTTG
    449210-4GATATGTTGGGTCATTTTGGAGCTCAAGTTTGTAAGTTGGTGGTCG
    549210-5CAAGGTCCACAGGAAGAAGGTAAGATTGTTGCACTCAAAGAAATG
    649210-6CTGGCTAACTCCACATGCTCTTTTCCACTGGCCTACCTCACG
    749210-7CCAACTAATGAACCTGGAGCGCAATATGTGCAACCAAAATGTGAA
    849210-8GGGCAGCCTTCACTAATGACATTACGCTGAAACAGGGAAATG
    949210-9GCTGAGGATGGAATACGAAGGAGGTGGAGGGAAATCGAGGAG
    下载: 导出CSV

    表  2  测序数据和测序质量的统计分析

    Table  2.   Statistical analysis on sequencing data and quality

    样本
    Sample
    原始数据
    Raw base/bp
    过滤数据
    Clean base/bp
    比例
    Rate/%
    Q20/%Q30/%GC/%
    w147 057 752 7506 731 469 25095.3896.1091.1544.27
    隐性基因池 Recessive gene pool12 841 555 75012 418 982 75096.7196.0091.0444.43
    显性基因池 Dominant gene pool9 239 019 2508 888 096 50096.2095.9691.0042.56
    注: Q20及Q30:Phred数值大于20、30的碱基占总体碱基的百分比,其中,Phred=-10log10(e),e为错误率。
    Note: Q20 and Q30: percentages of bases with Phred values greater than 20 and 30, respectively, in total number of bases; Phred=-10log10(e); e: error rate.
    下载: 导出CSV

    表  3  目标染色体的因果变异鉴定结果

    Table  3.   Causal variant identification on target chromosome

    染色体
    Chromosome
    物理位置
    Physical location
    野生型
    Wild type
    隐性池
    Hidden pool
    显性池
    Dominant pool
    野生型参考基因组
    WT-IRGSP5
    Chr3 27726166 1/1∶8∶1∶7 1/1∶41∶0∶41 0/1∶25∶19∶6 0/0∶1∶1∶0
    Chr3 28129631 0/1∶11∶2∶9 0/1∶39∶2∶37 0/1∶31∶20∶11 0/0∶13∶13∶0
    注:表中数据0/0表示参考基因组序列的纯合,1/1表示变异序列的纯合。
    Note: * 0/0 and 1/1 represent homozygous of reference and variant genome sequence, respectively.
    下载: 导出CSV

    表  4  利用snpEff对候选因果变异进行注释的结果

    Table  4.   Annotated candidate causal variant by snpEff

    差异位点   
    Variable site   
    差异位点1   
    Variable site 1   
    差异位点2   
    Variable site 2   
    物理位置 Physical location 27726166 28129631
    突变基因 Mutant gene LOC_Os03g48626 LOC_Os03g49210
    变异结果 Consequence 变异发生在内含子中 错义突变aCc(T) → aTc(I)由于C变异为T,导致第20个氨基酸T变为I
    基因功能注释 Functional annotation 表达蛋白 含有BRCA1 C末端结构域的蛋白质
    下载: 导出CSV
  • [1] LIM P O, KIM H J, NAM H G. Leaf senescence [J]. Annual Review of Plant Biology, 2007, 58: 115−136. doi: 10.1146/annurev.arplant.57.032905.105316
    [2] BECK C I, ULRICH T H. Environmental release permits [J]. Bio/Technology, 1993, 11(12): 1524−1528.
    [3] SWAMINATHAN M S. Towards a hunger-free India [J]. The Indian Journal of Nutrition and Dietetics, 1999, 36(4): 108−117.
    [4] DAI L Y, LIU X L, XIAO Y H, et al. Recent advances in cloning and characterization of disease resistance genes in rice [J]. Journal of Integrative Plant Biology, 2007, 49(1): 112−119. doi: 10.1111/j.1744-7909.2006.00413.x
    [5] PROJECT I R G S. The map-based sequence of the rice genome [J]. Nature, 2005, 436(7052): 793−800. doi: 10.1038/nature03895
    [6] YOSHIDA S. Molecular regulation of leaf senescence [J]. Current Opinion in Plant Biology, 2003, 6(1): 79−84. doi: 10.1016/S1369526602000092
    [7] 王备芳, 陈玉宇, 张迎信, 等. 水稻早衰突变体es5的鉴定及其突变基因的精细定位 [J]. 中国农业科学, 2018, 51(4):613−625. doi: 10.3864/j.issn.0578-1752.2018.04.002

    WANG B F, CHEN Y Y, ZHANG Y X, et al. Identification and fine mapping of an early senescent leaf mutant Es5 in Oryza sativa L [J]. Scientia Agricultura Sinica, 2018, 51(4): 613−625.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.04.002
    [8] SAKURABA Y, RAHMAN M L, CHO S H, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions [J]. The Plant Journal:for Cell and Molecular Biology, 2013, 74(1): 122−133. doi: 10.1111/tpj.12110
    [9] LIN A H, WANG Y Q, TANG J Y, et al. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice [J]. Plant Physiology, 2011, 158(1): 451−464.
    [10] LIANG C Z, WANG Y Q, ZHU Y N, et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27): 10013−10018. doi: 10.1073/pnas.1321568111
    [11] KONG Z S, LI M N, YANG W Q, et al. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice [J]. Plant Physiology, 2006, 141(4): 1376−1388. doi: 10.1104/pp.106.082941
    [12] 朱永生, 蒋家焕, 蔡秋华, 等. 水稻早衰突变体w14的生理学特性分析及其基因的精细定位 [J]. 科学通报, 2021, 66(32):4144−4156. doi: 10.1360/TB-2021-0012

    ZHU Y S, JIANG J H, CAI Q H, et al. Analysis of physiological characteristics of early leaf senescence mutant w14 and its gene mapping for rice [J]. Chinese Science Bulletin, 2021, 66(32): 4144−4156.(in Chinese) doi: 10.1360/TB-2021-0012
    [13] 梁廷敏, 郭新睿, 陈子强, 等. 水稻材料IR65482抗稻瘟病基因鉴定与定位 [J]. 分子植物育种, 2018, 16(13):4308−4313.

    LIANG T M, GUO X R, CHEN Z Q, et al. Identification and mapping of a blast disease resistance gene in rice line IR65482 [J]. Molecular Plant Breeding, 2018, 16(13): 4308−4313.(in Chinese)
    [14] SUN J, YANG L M, WANG J G, et al. Identification of a cold-tolerant locus in rice (Oryza sativa L. ) using bulked segregant analysis with a next-generation sequencing strategy [J]. Rice (New York, N Y ), 2018, 11(1): 24.
    [15] SALUNKHE A S, POORNIMA R, PRINCE K S J, et al. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L. ) using bulk segregant analysis [J]. Molecular Biotechnology, 2011, 49(1): 90−95. doi: 10.1007/s12033-011-9382-x
    [16] LAFARGE S, MONTANÉ M H. Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays [J]. Nucleic Acids Research, 2003, 31(4): 1148−1155. doi: 10.1093/nar/gkg202
    [17] BLOCK-SCHMIDT A S, DUKOWIC-SCHULZE S, WANIECK K, et al. BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana [J]. Nucleic Acids Research, 2010, 39(1): 146−154.
    [18] TRAPP O, SEELIGER K, PUCHTA H. Homologs of breast cancer genes in plants [J]. Frontiers in Plant Science, 2011, 2: 19.
    [19] EINSET J, COLLINS A R. DNA repair after X-irradiation: Lessons from plants [J]. Mutagenesis, 2014, 30(1): 45−50.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  91
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-02-10
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回