• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

郑州市常绿树种滞尘能力与叶片生理结构的响应

贺丹 汪安印 李紫萱 王翼飞 李朝梅 雷雅凯 李永华 董娜琳

贺丹,汪安印,李紫萱,等. 郑州市常绿树种滞尘能力与叶片生理结构的响应 [J]. 福建农业学报,2022,37(2):203−212 doi: 10.19303/j.issn.1008-0384.2022.002.010
引用本文: 贺丹,汪安印,李紫萱,等. 郑州市常绿树种滞尘能力与叶片生理结构的响应 [J]. 福建农业学报,2022,37(2):203−212 doi: 10.19303/j.issn.1008-0384.2022.002.010
HE D, WANG A Y, LI Z X, et al. Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city [J]. Fujian Journal of Agricultural Sciences,2022,37(2):203−212 doi: 10.19303/j.issn.1008-0384.2022.002.010
Citation: HE D, WANG A Y, LI Z X, et al. Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city [J]. Fujian Journal of Agricultural Sciences,2022,37(2):203−212 doi: 10.19303/j.issn.1008-0384.2022.002.010

郑州市常绿树种滞尘能力与叶片生理结构的响应

doi: 10.19303/j.issn.1008-0384.2022.002.010
基金项目: 国家自然科学基金项目(31600579);河南省科技攻关项目(212102110185);河南省青年骨干教师资助项目(2020GGJS049)
详细信息
    作者简介:

    贺丹(1983–),女,博士,副教授,研究方向:风景园林植物应用(E-mail:dandan990111@163.com

    通讯作者:

    董娜琳(1987–),女,硕士,实验师,研究方向:风景园林规划与公共健康(E-mail:dongnalin@henau.edu.cn

  • 中图分类号: S 688

Dust Retention and Physiological Responses of Evergreen Tree Leaves in Zhengzhou city

  • 摘要:   目的  探究郑州市常绿树种的滞尘及综合抗污染能力。  方法  以7种常见常绿树种为研究对象,应用分级滤膜过滤法测定其单位叶面积不同粒径(TSP、PM10、PM2.5)的颗粒物滞留量,并比较不同污染程度下各树种叶片的生理指标和叶表形态结构。  结果  不同树种滞尘量差异显著,针叶树种单位叶面积滞尘量显著高于阔叶树种,针叶树种中圆柏的滞尘量高于雪松,阔叶树种中单位叶面积滞尘量最高为女贞,滞留量最低的为南天竹。大部分树种的叶绿素a、b含量在污染严重地区相对较低,丙二醛含量在污染严重地区相对较高,与该地区植物较强的滞尘能力相符,且树种的滞尘量与生理指标存在显著相关性。  结论  植物吸附的颗粒物多集中在沟槽、中脉、气孔等有明显凹凸变化的区域,且随着污染程度的变化,其气孔大小和气孔密度发生变化,从而影响其滞尘能力。采用主成分分析法,得出树种抗污染综合能力从大到小依次为雪松、圆柏、女贞、石楠、大叶黄杨、海桐和南天竹。因此,今后在郑州进行城市绿化时,应优先选用雪松、圆柏这种综合抗污染能力较强的树种。
  • 图  1  采样区域分布

    注:1、公园;2、道路;3、工厂。图5同。

    Figure  1.  Schematic distribution of sampling area

    Note: 1. park; 2. road; 3. factory. The same was applied in Fig.5.

    图  2  7种常绿树种在3个采样区滞尘量的比较

    注:不同小写字母表示在同一采样区下不同树种间差异显著(P<0.05);A、圆柏;B、雪松;C、女贞;D、石楠;E、大叶黄杨;F、海桐;G、南天竹。图3图4图5同。

    Figure  2.  Dust deposition on 7 species of evergreen in 3 sampling areas

    Note: Different lowercase letters indicate significant differences among different tree species in the same sampling area (P<0.05); A. Sabina chinensis. B. Cedrus deodara. C. Ligustrum lucidum. D. Photinia serratifolia. E. Buxus megistophylla. F. Pittosporum tobira. G. Nandina domestica. The same for Fig.3, 4, 5.

    图  3  7种常绿树种在3处采样区的叶绿素a、b以及丙二醛含量比较

    Figure  3.  Contents of chlorophyll a, chlorophyll b, and malondialdehyde of evergreens in 3 sampling areas

    图  4  7种常绿树种的叶面颗粒物分布

    注:箭头为不同植物叶面颗粒分布集中区域(×60倍)。

    Figure  4.  Distribution of particles fell on leaves of various species of evergreens

    Note: Arrows are the concentrated areas of leaf particles of different plants (×60 times).

    图  5  7种常绿树种在3处采样区的叶面气孔形态观察 (×1200倍)

    Figure  5.  Leaf stomata morphology of evergreens in 3 sampling areas (1200 ×)

    表  1  7种常绿树种在3处采样区的叶面气孔参数

    Table  1.   Stomatal parameters of evergreens in 3 sampling area

    树种
    Tree species
    气孔形态
    Stomatal morphology
    采样区域
    Sampling area
    气孔密度
    Stomatal density/(个·mm−2)
    气孔长度
    Stomatal length/μm
    气孔宽度
    Stomatal width/μm
    圆柏 Sabina chinensis 长圆形 Long round 1 55.18±0.00 44.21±0.92 36.15±0.78
    2 55.18±0.00 42.37±0.30 32.60±0.39
    3 66.68±3.98 42.11±0.51 20.93±0.49
    雪松 Cedrus deodara 长圆形 Long round 1 27.59±0.00 59.28±0.91 38.67±0.30
    2 27.59±0.00 44.26±0.32 37.60±0.35
    3 27.59±0.00 31.98±1.16 31.27±0.75
    女贞 Ligustrum lucidum 卵圆形 Ovate 1 223.03±14.36 24.72±0.15 17.25±1.13
    2 236.82±3.98 24.41±0.22 13.72±1.07
    3 303.50±6.90 22.93±1.24 12.59±0.05
    石楠 Photinia serratifolia 圆形 Round 1 257.51±15.93 23.16±0.34 22.18±0.28
    2 425.36±14.36 20.23±0.32 17.35±1.30
    3 443.75±14.36 15.20±0.43 12.76±0.38
    大叶黄杨 Buxus megistophylla 圆形 Round 1 236.82±22.17 37.91±0.28 37.26±0.23
    2 239.12±7.96 26.83±0.13 25.89±1.01
    3 287.40±14.36 24.74±0.15 24.26±0.27
    海桐 Pittosporum tobira 圆形 Round 1 170.14±7.96 40.55±0.45 39.62±0.20
    2 271.31±21.07 32.50±0.43 30.92±0.06
    3 298.90±21.07 25.65±1.16 24.13±0.11
    南天竹 Nandina domestica 卵圆形 Ovate 1 377.07±31.86 19.91±0.31 18.66±0.31
    2 434.55±11.95 19.48±0.35 17.39±0.47
    3 448.35±20.69 15.76±0.09 14.61±0.37
    下载: 导出CSV

    表  2  树种、污染程度与气孔指标的方差分析

    Table  2.   Variance analysis on tree species, pollution degree, and stoma index

    固定因子
    Fixed factor
    因变量
    Dependent variable
    Ⅲ类平方和
    Sum of squares of class Ⅲ
    自由度
    Degrees of freedom
    均方
    Squared value
    F显著性
    Significance
    污染程度 The degree of pollution 气孔长度 Stomatal length 365.339 2 182.669 1.417 0.268
    气孔宽度 Stomata width 342.450 2 171.225 2.192 0.141
    气孔密度 Stomatal density 20557.829 2 10278.915 0.457 0.640
    树种差异 Tree species differences 气孔长度 Stomatal length 2052.773 6 342.129 7.571 0.001**
    气孔宽度 Stomata width 1303.944 6 217.324 4141.690 0.001**
    气孔密度 Stomatal density 386552.852 6 64425.475 23.403 0.000**
    注:**表示P<0.01。
    Note: ** means P<0.01.
    下载: 导出CSV

    表  3  叶片滞尘量与生理指标之间的相关性

    Table  3.   Correlation between dust retention and physiological indices of leaves

    X1X2X3X4X5X6
    X1 1 0.917** 0.886** −0.692 −0.739 0.966**
    X2 1 0.997** −0.531 −0.508 0.907**
    X3 1 −0.478 −0.443 0.878**
    X4 1 0.918** −0.709
    X5 1 −0.727
    X6 1
    注:**表示在0.01水平上极显著相关;X1:单位叶面积TSP滞留量; X2:单位叶面积PM10滞留量; X3:单位叶面积PM2.5滞留量; X4 :叶绿素a含量;X5:叶绿素b含量;X6:丙二醛含量。
    Note: **extremely significant correlation at P< 0.01; X1: TSP retention per unit leaf area; X2: PM10 retention per unit leaf area; X3: PM2.5 retention per unit leaf area; X4: chlorophyll a content; X5: chlorophyll b content; X6: malondialdehyde content.
    下载: 导出CSV

    表  4  滞尘量与生理指标的主成分贡献率和因子载荷矩阵

    Table  4.   Contribution rate and factor loading matrix of principal components on dust retention and physiological indicators

    主成分
    Principal component
    成分矩阵 Component matrix特征值
    Eigen value
    贡献率
    Contribution/%
    累计贡献率
    Cumulative/%
    X1X2X3X4X5X6
    10.980.920.89−0.79−0.800.974.8079.9279.92
    20.090.380.440.560.580.081.0016.7396.65
    下载: 导出CSV

    表  5  树种在第1、2主成分的得分以及综合得分

    Table  5.   Overall score and scores of first and second principal components on varied species of plants

    树种
    Tree species
    F1F2F排名
    Ranking
    雪松 Cedrus deodara 3.19 0.01 2.55 1
    圆柏 Sabina chinensis 3.08 −0.31 2.41 2
    女贞 Ligustrum lucidum −0.25 0.73 −0.08 3
    石楠 Photinia serratifolia −1.50 1.28 −0.98 4
    大叶黄杨 Buxus megistophylla −1.41 0.64 −1.02 5
    海桐 Pittosporum tobira −1.32 −0.63 −1.16 6
    南天竹 Nandina domestica −1.79 −1.72 −1.72 7
    注:F1:树种在第1主成分(滞尘能力)的得分,随数值增加树种滞尘能力得分高;F2:树种在第2主成分(生理响应)的得分,随数值增加树种生理响应得分高;F:树种的综合得分;表中的排名是按照F综合得分进行的排名。
    Note: F1: The score of tree species in the first principal component (Dust detentions) , the dust retention ability score of tree species was higher with increasing value; F2: The score of tree species in the second principal component (Physiological response) , the physiological response score of tree species was higher with increasing value; F: Composite score of tree species; The rankings in the table are based on the F composite score.
    下载: 导出CSV
  • [1] 黄丽坤, 王广智, 王琨, 等. 哈尔滨市采暖与非采暖期大气颗粒物污染特性研究 [J]. 环境工程学报, 2011, 5(1):146−150.

    HUANG L K, WANG G Z, WANG K, et al. Pollution properties of atmospheric particles in Harbin during heating and non-heating periods [J]. Chinese Journal of Environmental Engineering, 2011, 5(1): 146−150.(in Chinese)
    [2] 张超, 吴群, 彭建超, 等. 城市绿地生态系统服务价值估算及功能评价: 以南京市为例 [J]. 生态科学, 2019, 38(4):142−149.

    ZHANG C, WU Q, PENG J C, et al. Calculation of the value and evaluation of the function for ecosystem services of urban green space: A case study in Nanjing [J]. Ecological Science, 2019, 38(4): 142−149.(in Chinese)
    [3] 郭蒙蒙, 姜楠, 王申博, 等. 郑州市2014—2017年大气污染特征及气象条件影响分析 [J]. 环境科学, 2019, 40(9):3856−3867.

    GUO M M, JIANG N, WANG S B, et al. Analysis of air pollution characteristics and meteorological conditions in Zhengzhou from 2014 to 2017 [J]. Environmental Science, 2019, 40(9): 3856−3867.(in Chinese)
    [4] 王琴, 冯晶红, 黄奕, 等. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征 [J]. 生态学报, 2020, 40(1):213−222.

    WANG Q, FENG J H, HUANG Y, et al. Dust- retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan [J]. Acta Ecologica Sinica, 2020, 40(1): 213−222.(in Chinese)
    [5] 余海龙, 黄菊莹. 城市绿地滞尘机理及其效应研究进展 [J]. 西北林学院学报, 2012, 27(6):238−241,247. doi: 10.3969/j.issn.1001-7461.2012.06.47

    YU H L, HUANG J Y. Research advances in mechanism and effect of dust retention of urban green areas [J]. Journal of Northwest Forestry University, 2012, 27(6): 238−241,247.(in Chinese) doi: 10.3969/j.issn.1001-7461.2012.06.47
    [6] 陈小平, 焦奕雯, 裴婷婷, 等. 园林植物吸附细颗粒物(PM2.5)效应研究进展 [J]. 生态学杂志, 2014, 33(9):2558−2566.

    CHEN X P, JIAO Y W, PEI T T, et al. The effect of adsorbing fine particulate matter(PM2.5) by garden plants: A review [J]. Chinese Journal of Ecology, 2014, 33(9): 2558−2566.(in Chinese)
    [7] 吕铃钥, 李洪远, 杨佳楠. 植物吸附大气颗粒物的时空变化规律及其影响因素的研究进展 [J]. 生态学杂志, 2016, 35(2):524−533.

    LYU L Y, LI H Y, YANG J N. The temporal-spatial variation characteristics and influencing factors of absorbing air particulate matters by plants: A review [J]. Chinese Journal of Ecology, 2016, 35(2): 524−533.(in Chinese)
    [8] 张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系 [J]. 北京林业大学学报, 2017, 39(6):70−77.

    ZHANG T, HONG X L, SUN L W, et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis [J]. Journal of Beijing Forestry University, 2017, 39(6): 70−77.(in Chinese)
    [9] 张家洋, 刘兴洋, 邹曼, 等. 37种道路绿化树木滞尘能力的比较 [J]. 云南农业大学学报(自然科学), 2013, 28(6):905−912.

    ZHANG J Y, LIU X Y, ZOU M, et al. Comparison of dust retention capacities among thirty-seven species of road landscape trees [J]. Journal of Yunnan Agricultural University (Natural Science), 2013, 28(6): 905−912.(in Chinese)
    [10] 张维康, 王兵, 牛香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力 [J]. 环境科学, 2015, 36(7):2381−2388.

    ZHANG W K, WANG B, NIU X. Adsorption capacity of the air particulate matter in urban landscape plants in different polluted regions of Beijing [J]. Environmental Science, 2015, 36(7): 2381−2388.(in Chinese)
    [11] 李艳梅, 陈奇伯, 李艳芹, 等. 昆明10个绿化树种对不同污染区的滞尘及吸净效应 [J]. 西南林业大学学报, 2016, 36(3):105−110.

    LI Y M, CHEN Q B, LI Y Q, et al. Study on the effect of absorption and purification air pollution of 10 common greening species at different polluted area in Kunming [J]. Journal of Southwest Forestry University, 2016, 36(3): 105−110.(in Chinese)
    [12] 吕晓倩, 张银龙. 城市攀缘植物对大气颗粒物的吸附效果及重金属累积研究 [J]. 中国园林, 2020, 36(12):101−105.

    LYU X Q, ZHANG Y L. Deposition of particular matter and accumulation of heavy metal on six climbing plants [J]. Chinese Landscape Architecture, 2020, 36(12): 101−105.(in Chinese)
    [13] 王会霞, 石辉, 刘剑华, 等. 西安城区2种女贞叶面滞尘和叶片形态结构 [J]. 安全与环境学报, 2018, 18(6):2344−2351.

    WANG H X, SHI H, LIU J H, et al. Analysis of leaf dust accumulation and leaf morphological structure of 2 plant species under different urban environments in Xi'an [J]. Journal of Safety and Environment, 2018, 18(6): 2344−2351.(in Chinese)
    [14] 高传友. 南宁市典型园林植物滞尘效应及生理特性研究 [J]. 水土保持研究, 2016, 23(1):187−192.

    GAO C Y. Research on dust retention capacities and physiological properties of different typical green plants in Nanning City [J]. Research of Soil and Water Conservation, 2016, 23(1): 187−192.(in Chinese)
    [15] 杨佳, 王会霞, 谢滨泽, 等. 北京9个树种叶片滞尘量及叶面微形态解释 [J]. 环境科学研究, 2015, 28(3):384−392.

    YANG J, WANG H X, XIE B Z, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing [J]. Research of Environmental Sciences, 2015, 28(3): 384−392.(in Chinese)
    [16] 林星宇, 李海梅, 李彦华, 等. 八种乔木滞尘效益及其与叶表面特征关系 [J]. 北方园艺, 2019(17):94−101.

    LIN X Y, LI H M, LI Y H, et al. Relationship between the surface characteristics of eight tree leaves and dust retention [J]. Northern Horticulture, 2019(17): 94−101.(in Chinese)
    [17] CHEN L, LIU C, ZHANG L, et al. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5) [J]. Scientific Reports, 2017, 7: 3206. doi: 10.1038/s41598-017-03360-1
    [18] MO L, MA Z Y, XU Y S, et al. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China [J]. PLoS One, 2015, 10(10): e0140664. doi: 10.1371/journal.pone.0140664
    [19] 晏增, 赵蓬晖, 杨淑红, 等. 冬季郑州市12个常绿树种的光合特性及滞尘能力 [J]. 广西植物, 2021, 41(9):1433−1442. doi: 10.11931/guihaia.gxzw201911004

    YAN Z, ZHAO P H, YANG S H, et al. Photosynthetic characteristics and dust retention capacities of 12 evergreen tree species in Zhengzhou City during winter [J]. Guihaia, 2021, 41(9): 1433−1442.(in Chinese) doi: 10.11931/guihaia.gxzw201911004
    [20] HE C, QIU K Y, ALAHMAD A, et al. Particulate matter capturing capacity of roadside evergreen vegetation during the winter season [J]. Urban Forestry & Urban Greening, 2020, 48: 126510.
    [21] SU K, YU Q, HU Y H, et al. Inversion and effect research on dust distribution of urban forests in Beijing [J]. Forests, 2019, 10(5): 418. doi: 10.3390/f10050418
    [22] 陈强, 梅琨, 朱慧敏, 等. 郑州市PM2.5浓度时空分布特征及预测模型研究 [J]. 中国环境监测, 2015, 31(3):105−112. doi: 10.3969/j.issn.1002-6002.2015.03.018

    CHEN Q, MEI K, ZHU H M, et al. Study on spatiotemporal variability of PM2.5 concentrations and prediction model over Zhengzhou City [J]. Environmental Monitoring in China, 2015, 31(3): 105−112.(in Chinese) doi: 10.3969/j.issn.1002-6002.2015.03.018
    [23] 王会霞, 石辉, 王彦辉. 典型天气下植物叶面滞尘动态变化 [J]. 生态学报, 2015, 35(6):1696−1705.

    WANG H X, SHI H, WANG Y H. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions [J]. Acta Ecologica Sinica, 2015, 35(6): 1696−1705.(in Chinese)
    [24] 杨山. 长三角地区三种常绿阔叶绿化树种对颗粒物的滞留及其生理响应[D]. 杭州: 浙江农林大学, 2018

    YANG S. Particulate retention and physiological response of three evergreen broad-leaved afforestation tree species in Yangtze River Delta[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese)
    [25] 史军娜, 张罡, 安海龙, 等. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究 [J]. 北京林业大学学报, 2016, 38(12):84−91.

    SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles [J]. Journal of Beijing Forestry University, 2016, 38(12): 84−91.(in Chinese)
    [26] 赵松婷, 李新宇, 李延明. 北京市29种园林植物滞留大气细颗粒物能力研究 [J]. 生态环境学报, 2015, 24(6):1004−1012.

    ZHAO S T, LI X Y, LI Y M. Fine particle-retaining capability of twenty-nine landscape plant species in Beijing [J]. Ecology and Environmental Sciences, 2015, 24(6): 1004−1012.(in Chinese)
    [27] 李朝梅, 王军梦, 王腾飞, 等. 郑州市常见公园绿化植物的滞尘能力及叶片性状分析 [J]. 西北林学院学报, 2021, 36(2):123−129. doi: 10.3969/j.issn.1001-7461.2021.02.18

    LI C M, WANG J M, WANG T F, et al. Dust-retention capability and leaf traits of common park greening plant species in Zhengzhou City [J]. Journal of Northwest Forestry University, 2021, 36(2): 123−129.(in Chinese) doi: 10.3969/j.issn.1001-7461.2021.02.18
    [28] 淑敏, 斯日木极, 姜涛, 等. 辽宁西北部主要绿化树种对空气颗粒物滞留能力研究 [J]. 水土保持学报, 2018, 32(4):297−303,309.

    SHU M, SI R M J, JIANG T, et al. Retention capacity of the main urban afforest plant species for atmospheric particles in northwest of Liaoning Province [J]. Journal of Soil and Water Conservation, 2018, 32(4): 297−303,309.(in Chinese)
    [29] 任媛媛, 刘艳萍, 王念, 等. 9种屋顶绿化阔叶植物叶片解剖结构与抗旱性的关系 [J]. 南京林业大学学报(自然科学版), 2014, 38(4):64−68.

    REN Y Y, LIU Y P, WANG N, et al. The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4): 64−68.(in Chinese)
    [30] 裘璐函, 何婉璎, 刘美华, 等. 杭州市6种常见绿化树种滞尘能力及光合特性 [J]. 浙江农林大学学报, 2018, 35(1):81−87. doi: 10.11833/j.issn.2095-0756.2018.01.011

    QIU L H, HE W Y, LIU M H, et al. Differences in dust removal capability and photosynthetic characteristics of six common tree species in Hangzhou City [J]. Journal of Zhejiang A & F University, 2018, 35(1): 81−87.(in Chinese) doi: 10.11833/j.issn.2095-0756.2018.01.011
    [31] 李果. 浙江农林大学衣锦校区绿化植物滞尘效应分析[D]. 杭州: 浙江农林大学, 2019

    LI G. Analysis on dust retention effect of green plants in yijin campus of Zhejiang agriculture and forestry university[D]. Hangzhou: Zhejiang A & F University, 2019. (in Chinese)
    [32] 俎丽红, 王鑫, 王润玺, 等. 不同大气环境中白皮松针叶重金属积累及抗性特征研究 [J]. 农业环境科学学报, 2017, 36(11):2207−2215. doi: 10.11654/jaes.2017-0332

    ZU L H, WANG X, WANG R X, et al. Study on resistance characteristics to heavy metal accumulation of Pinus bungeana Zucc. needles from different atmospheric environments [J]. Journal of Agro-Environment Science, 2017, 36(11): 2207−2215.(in Chinese) doi: 10.11654/jaes.2017-0332
    [33] 李艳梅, 陈奇伯, 王邵军, 等. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释 [J]. 林业科学, 2018, 54(5):18−29. doi: 10.11707/j.1001-7488.20180503

    LI Y M, CHEN Q B, WANG S J, et al. Effects of leaf surface micro-morphology structure on leaf dust-retaining ability of main greening tree species in Kunming City [J]. Scientia Silvae Sinicae, 2018, 54(5): 18−29.(in Chinese) doi: 10.11707/j.1001-7488.20180503
    [34] 段嵩岚, 闫淑君, 田高飞, 等. 福州市19种灌木滞留颗粒物效应与叶片性状研究 [J]. 西北林学院学报, 2018, 33(4):230−238. doi: 10.3969/j.issn.1001-7461.2018.04.38

    DUAN S L, YAN S J, TIAN G F, et al. Effects of the particles retained by 19 widely used shrubs on road sides and their relationships with leaf trait in Fuzhou [J]. Journal of Northwest Forestry University, 2018, 33(4): 230−238.(in Chinese) doi: 10.3969/j.issn.1001-7461.2018.04.38
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  108
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-02-01
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回