• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特石漠化地区火龙果林退化对土壤生态酶化学计量指标的影响

王治福 喻阳华 熊康宁 杨珊 秦瑶 李廷铃 刘海燕

王治福,喻阳华,熊康宁,等. 喀斯特石漠化地区火龙果林退化对土壤生态酶化学计量指标的影响 [J]. 福建农业学报,2022,37(2):247−257 doi: 10.19303/j.issn.1008-0384.2022.002.015
引用本文: 王治福,喻阳华,熊康宁,等. 喀斯特石漠化地区火龙果林退化对土壤生态酶化学计量指标的影响 [J]. 福建农业学报,2022,37(2):247−257 doi: 10.19303/j.issn.1008-0384.2022.002.015
WANG Z F, YU Y H, XIONG K N, et al. Effects of Degrading Hylocereus undatus Forests in Karst Rocky Desertification Area on Soil Ecoenzymatic Stoichiometry [J]. Fujian Journal of Agricultural Sciences,2022,37(2):247−257 doi: 10.19303/j.issn.1008-0384.2022.002.015
Citation: WANG Z F, YU Y H, XIONG K N, et al. Effects of Degrading Hylocereus undatus Forests in Karst Rocky Desertification Area on Soil Ecoenzymatic Stoichiometry [J]. Fujian Journal of Agricultural Sciences,2022,37(2):247−257 doi: 10.19303/j.issn.1008-0384.2022.002.015

喀斯特石漠化地区火龙果林退化对土壤生态酶化学计量指标的影响

doi: 10.19303/j.issn.1008-0384.2022.002.015
基金项目: 贵州省科技计划重大专项([2017]5411);贵州省世界一流学科建设计划项目([2019]125)
详细信息
    作者简介:

    王治福(1993−),男,硕士研究生,研究方向:喀斯特生态建设与区域经济(E-mail:wzfkst@163.com

    通讯作者:

    熊康宁(1958−),男,教授,研究方向:喀斯特地貌与洞穴、世界遗产和石漠化治理(E-mail:xiongkn@163.com

  • 中图分类号: S 15

Effects of Degrading Hylocereus undatus Forests in Karst Rocky Desertification Area on Soil Ecoenzymatic Stoichiometry

  • 摘要:   目的  探讨喀斯特石漠化地区火龙果林土壤酶活性和生态酶化学计量的变化特征。  方法  以无退化(ND)、轻度退化(LD)、中度退化(MD)、重度退化(SD)4种不同退化火龙果(Hylocereus undatus)林为研究对象,采用单因素方差分析、双因素方差分析、皮尔逊相关分析和冗余分析(RDA)方法,研究0~30 cm 土层β-葡萄糖苷酶(βGC),N-乙酰-β-D-葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)和酸性磷酸酶(ACP)4种土壤酶活性及生态酶化学计量特征的变异规律。  结果  (1)土壤βGC和ACP总体上随退化加剧呈先升高后降低;NAG仅在10~20 cm和20~30 cm土层存在显著差异,而LAP表现为SD、MD显著大于ND;LAP+NAG活性总体呈上升趋势。(2)土壤酶C:N随退化加剧而降低,酶C:P和酶N:P均随退化加剧而一定程度增加,表明退化火龙果林资源利用策略发生一定改变。生态酶化学计量的矢量 L随退化加剧而变大,在 MD为最大值;矢量A随着退化加剧而降低,在SD为最小值,且矢量 A均小于45°,表明喀斯特石漠化地区火龙果林土壤微生物生长受N素限制。(3)RDA分析表明,土壤理化性质能够解释土壤酶及生态酶化学计量83.4%的变异,其中土壤AP和TN对土壤酶和生态酶化学计量影响最大,分别能够解释系统47.5%和24.3%的变异。  结论  喀斯特石漠化地区火龙果林土壤微生物受N限制,且随退化加剧N限制有所增加。火龙果林退化对土壤酶活性和生态酶化学计量的影响是通过调控土壤N、P养分来实现的。
  • 图  1  不同退化火龙果林土壤理化性质

    注:不同大写字母表示同一土层内不同退化程度间差异显著,不同小写字母表示同一退化程度不同土层间差异显著(P<0.05);F:重要性,D:退化,S:土层,D×S:退化与土层交互作用,图23同。

    Figure  1.  Physiochemical properties of pitaya forests with varied degrees of degradation

    Note: Data with different capital letters indicate significant differences between varied degrees of degradation in same soil layer; data with different lowercase letters indicate significant differences between different layers of soil with same degree of degradation (p<0.05); F: Significance; D: degradation; S: soil layer, D×S: degradation and soil interaction; Same for Figs. 2 and 3.

    图  2  不同退化程度火龙果林土壤酶活性变化特征

    Figure  2.  Characteristic changes on soil enzyme activity of pitaya forests with varied degrees of degradation

    图  3  不同退化火龙果林土壤生态酶化学计量及矢量特征

    Figure  3.  Chemometric and vectorial characteristics of ecological enzymes in soils of pitaya forests with varied degrees of degradation

    图  4  土壤理化性质与酶活性、生态酶化学计量及矢量特征相关性

    Figure  4.  Correlation between physiochemical properties and enzyme activity, ecoenzymatic stoichiometry, and vector of soil

    图  5  土壤酶活性、生态酶化学计量及矢量特征的冗余分析

    Figure  5.  Redundant analysis on enzyme activity, ecoenzymatic stoichiometry, and vector of soil

    表  1  火龙果林退化程度划分标准

    Table  1.   Classification standards of pitaya forest degradation

    指标 Dividing index无退化 ND轻度退化 LD中度退化 MD重度退化 SD
    平均株高 Average plant height/m>1.71.5~1.7<1.5<1.5
    平均冠幅 Average crown width/m>21.8~2<1.8<1.5
    枝条颜色 Branch color绿色为主
    Mainly green
    浅绿色为主
    Mainly light green
    浅黄色为主
    Mainly light yellow
    黄色为主
    Mainly yellow
    平均结果枝条 Average result branches>40<30<20<10
    平均枝条长度 Average branch length/cm>130110~130<110<90
    平均枝条厚度 Average branch thickness/mm>6<5<5<5
    枯枝率 Rate of dead branches/%<10>10>20>30
    平均单果重 Average fruit weight/g>400300~400200~300<200
    下载: 导出CSV
  • [1] 刘艳, 宋同清, 蔡德所, 等. 喀斯特峰丛洼地不同土地利用方式土壤肥力特征 [J]. 应用生态学报, 2014, 25(6):1561−1568.

    LIU Y, SONG T Q, CAI D S, et al. Soil fertility characteristics under different land use patterns in depressions between karst hills [J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1561−1568.(in Chinese)
    [2] 喻阳华, 余杨, 杨苏茂, 等. 中国喀斯特高原山地区抗冻耐旱型植被退化现状及恢复对策 [J]. 世界林业研究, 2017, 30(1):72−75.

    YU Y H, YU Y, YANG S M, et al. Degradation situation and restoration countermeasures of frost resistant and drought tolerant vegetation in karst plateau mountain area, China [J]. World Forestry Research, 2017, 30(1): 72−75.(in Chinese)
    [3] 高雨秋, 戴晓琴, 王建雷, 等. 亚热带人工林下植被根际土壤酶化学计量特征 [J]. 植物生态学报, 2019, 43(3):258−272. doi: 10.17521/cjpe.2018.0299

    GAO Y Q, DAI X Q, WANG J L, et al. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chinese Journal of Plant Ecology, 2019, 43(3): 258−272.(in Chinese) doi: 10.17521/cjpe.2018.0299
    [4] 彭子洋, 刘卫星, 田瑞, 等. 海拔和坡向对唐古拉山土壤胞外酶活性的影响 [J]. 生态学报, 2021, 41(19):7659−7668.

    PENG Z Y, LIU W X, TIAN R, et al. Effects of alitudle and aspect on soil extraellular enzyme activities in Tanggula Mountain [J]. Acta Ecologica Sinica, 2021, 41(19): 7659−7668.(in Chinese)
    [5] HILL B H, ELONEN C M, JICHA T M, et al. Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin [J]. Biogeochemistry, 2010, 97(2): 195−209.
    [6] 张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征 [J]. 生态学报, 2018, 38(16):5828−5836.

    ZHANG X X, YANG L M, CHEN Z, et al. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas [J]. Acta Ecologica Sinica, 2018, 38(16): 5828−5836.(in Chinese)
    [7] 周玮, 周运超. 北盘江喀斯特峡谷区不同植被类型的土壤酶活性 [J]. 林业科学, 2010, 46(1):136−141.

    ZHOU W, ZHOU Y C. Soil enzyme activities under different vegetation types in Beipan River karst gorge district [J]. Scientia Silvae Sinicae, 2010, 46(1): 136−141.(in Chinese)
    [8] 张建锋, 邢尚军. 环境胁迫下刺槐人工林地土壤退化特征研究 [J]. 土壤通报, 2009, 40(5):1086−1091.

    ZHANG J F, XING S J. Research on Soil degradation of Robinia pseudoacacia plantation under environmental stress [J]. Chinese Journal of Soil Science, 2009, 40(5): 1086−1091.(in Chinese)
    [9] 蔡晓布, 张永青, 邵伟. 不同退化程度高寒草原土壤肥力变化特征 [J]. 生态学报, 2008, 28(3):1034−1044.

    CAI X B, ZHANG Y Q, SHAO W. Characteristics of soil fertility in alpine steppes at different degradation grades [J]. Acta Ecologica Sinica, 2008, 28(3): 1034−1044.(in Chinese)
    [10] 于德良, 雷泽勇, 赵国军, 等. 土壤酶活性对沙地樟子松人工林衰退的响应 [J]. 环境化学, 2019, 38(1):97−105.

    YU D L, LEI Z Y, ZHAO G J, et al. Response of soil enzyme activity to the decline of Pinus sylvestris var. mongolica plantations on sand land [J]. Environmental Chemistry, 2019, 38(1): 97−105.(in Chinese)
    [11] 李海云, 张建贵, 姚拓, 等. 退化高寒草地土壤养分、酶活性及生态化学计量特征 [J]. 水土保持学报, 2018, 32(5):287−295.

    LI H Y, ZHANG J G, YAO T, et al. Soil nutrients, enzyme activities and ecological stoichiometric characteristics in degraded alpine grasslands [J]. Journal of Soil and Water Conservation, 2018, 32(5): 287−295.(in Chinese)
    [12] 喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素 [J]. 草地学报, 2020, 28(6):1702−1710.

    YU L H, WANG J, LIAO L R, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2020, 28(6): 1702−1710.(in Chinese)
    [13] GOENAGA R, MARRERO A, PÉREZ D. Yield and fruit quality traits of dragon fruit cultivars grown in puerto rico [J]. Horttechnology, 2020, 30(6): 803−808. doi: 10.21273/HORTTECH04699-20
    [14] 蒋忠诚, 李先琨, 曾馥平, 等. 岩溶峰丛山地脆弱生态系统重建技术研究 [J]. 地球学报, 2009, 30(2):155−166.

    JIANG Z C, LI X K, ZENG F P, et al. Study of fragile ecosystem reconstruction technology in the karst peak-cluster mountain [J]. Acta Geoscientica Sinica, 2009, 30(2): 155−166.(in Chinese)
    [15] 熊康宁, 陈永毕, 陈浒, 等. 点石成金—喀斯特高原石漠化综合防治模式与技术[M]. 贵阳: 贵州科技出版社, 2011: 57-59.

    XIONG K N, CHEN Y B, CHEN H, et al. Midas touch: Technology and model of rocky desertification control in Guizhou [M]. Guiyang: Guizhou Science and Technology Press, 2011: 57-59. (in Chinese)
    [16] YU Q H, WEI Y Y, LING M, et al. Physiological effect on Hylocereus undulatus and Hylocereus undatus under simulated karst soil water deficiency [J]. Journal of Resources and Ecology, 2015, 6(4): 269−275. doi: 10.5814/j.issn.1674-764X.2015.04.011
    [17] 罗志文, 李向宏, 彭超, 等. 红肉火龙果新品种‘大龙’的选育 [J]. 果树学报, 2018, 35(5):642−645.

    LUO Z W, LI X H, PENG C, et al. A new red pulp dragon fruit cultivar‘Dalong’ [J]. Journal of Fruit Science, 2018, 35(5): 642−645.(in Chinese)
    [18] HO P L, TRAN D T, HERTOG M, et al. Effect of controlled atmosphere storage on the quality attributes and volatile organic compounds profile of dragon fruit (Hylocereus undatus) [J]. Postharvest Biology and Technology, 2021, 173: 111406. doi: 10.1016/j.postharvbio.2020.111406
    [19] 谢鸿根, 林旗华, 陈源, 等. 盐碱环境火龙果花、茎和果实氨基酸分析 [J]. 福建农业学报, 2017, 32(5):568−571.

    XIE H G, LIN Q H, CHEN Y, et al. Amino acids in flowers, stems and fruits of pitaya grown on saline habitats [J]. Fujian Journal of Agricultural Sciences, 2017, 32(5): 568−571.(in Chinese)
    [20] HERNÁNDEZ-RAMOS L, GARCÍA-MATEOS M D, CASTILLO-GONZÁLEZ A M, et al. Fruits of the pitahaya Hylocereus undatus and H. ocamponis: nutritional components and antioxidants [J]. Journal of Applied Botany and Food Quality, 2020, 93: 197−203.
    [21] 喻阳华, 钟欣平, 李红. 黔中石漠化区不同海拔顶坛花椒人工林生态化学计量特征 [J]. 生态学报, 2019, 39(15):5536−5545.

    YU Y H, ZHONG X P, LI H, et al. Ecological stoichiometry of Zanthoxylum planispinum var. dintanensis plantation at different altitudes in rocky desertification area of central Guizhou [J]. Acta Ecologica Sinica, 2019, 39(15): 5536−5545.(in Chinese)
    [22] 王璐, 喻阳华, 秦仕忆, 等. 不同衰老程度顶坛花椒土壤养分质量的评价 [J]. 西南农业学报, 2019, 32(1):139−147.

    WANG L, YU Y H, QIN S Y, et al. Soil nutrient quality of Zanthoxylum planispinum trees with different aging level [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(1): 139−147.(in Chinese)
    [23] 王亚东, 魏江生, 周梅, 等. 大兴安岭南段不同生长衰退程度山杨林生态化学计量特征 [J]. 土壤通报, 2021, 52(4):854−864.

    WANG Y D, WEI J S, ZHOU M, et al. Ecological of stoichiometric characteristics of Populus davidiana forests with different growth and decline degrees in Southern Daxing'anling [J]. Chinese Journal of Soil Science, 2021, 52(4): 854−864.(in Chinese)
    [24] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 20 − 114.
    [25] 焦鹏宇, 郭文, 陈泽龙, 等. 中亚热带不同林龄马尾松林土壤酶学计量特征[J/OL]. (2021-08-06). [2021-08-30]. https://doi. org/10.13227/j. hjkx. 202107043.

    JIAO P Y, GUO W, CHEN Z L, et al. Soil enzyme stoichiometric characteristics of Pinus massoniana plantations at different stand ages in mid-subtropical areas[J/OL]. (2021-08-06) [2021-08-30]. https://doi.org/10.13227/j.hjkx.202107043. (in Chinese)
    [26] HILL B H, ELONEN C M, JICHA T M, et al. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types [J]. Biogeochemistry, 2014, 120(1): 203−224.
    [27] 高阿娟, 刘子琦, 李渊, 等. 喀斯特峡谷区不同经济林地土壤水分变化特征—以贵州花江示范区为例 [J]. 中国岩溶, 2020, 39(6):863−872.

    GAO A J, LIU Z Q, LI Y, et al. Study on soil moisture variation characteristics of different economicforest lands in karst gorge area: A case study of Huajiang demonstration area in Guizhou Province [J]. Carsologica Sinica, 2020, 39(6): 863−872.(in Chinese)
    [28] 徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征 [J]. 生态学报, 2020, 40(24):8917−8927.

    XU G R, MA W W, SONG L C, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai wetlandunder different vegetation degradation conditions [J]. Acta Ecologica Sinica, 2020, 40(24): 8917−8927.(in Chinese)
    [29] 马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征 [J]. 自然资源学报, 2020, 35(5):1250−1260. doi: 10.31497/zrzyxb.20200519

    MA W W, SUN W Y. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai Wetland [J]. Journal of Natural Resources, 2020, 35(5): 1250−1260.(in Chinese) doi: 10.31497/zrzyxb.20200519
    [30] 魏强, 王芳, 陈文业, 等. 黄河上游玛曲不同退化程度高寒草地土壤物理特性研究 [J]. 水土保持通报, 2010, 30(5):16−21.

    WEI Q, WANG F, CHEN W Y, et al. Soil physical characteristics on different degraded alpine grasslands in Maqu County in Upper Yellow River [J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 16−21.(in Chinese)
    [31] 李霞, 张小平, 喻晓, 等. 代森锰锌类农药对生姜种植地土壤酶活性及微生物群落结构的影响 [J]. 生态环境学报, 2016, 25(9):1569−1574.

    LI X, ZHANG X P, YU X, et al. Effect of mancozeb on soil enzyme activities and microbial community in ginger fields [J]. Ecology and Environmental Sciences, 2016, 25(9): 1569−1574.(in Chinese)
    [32] PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review [J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324−349. doi: 10.1016/j.ecoenv.2004.06.010
    [33] 冯棣, 张俊鹏, 孙池涛, 等. 长期咸水灌溉对土壤理化性质和土壤酶活性的影响 [J]. 水土保持学报, 2014, 28(3):171−176.

    FENG D, ZHANG J P, SUN C T, et al. Effects of long-term irrigation with saline water on soil physical-chemical properties and activities of soil enzyme [J]. Journal of Soil and Water Conservation, 2014, 28(3): 171−176.(in Chinese)
    [34] 李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征 [J]. 草业科学, 2020, 37(12):2389−2402.

    LI S Y, SUN J, WANG Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau [J]. Pratacultural Science, 2020, 37(12): 2389−2402.(in Chinese)
    [35] QASWAR M, JING H, AHMED W, et al. Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China [J]. Applied Soil Ecology, 2021, 161: 103860. doi: 10.1016/j.apsoil.2020.103860
    [36] 高小峰, 闫本帅, 吴春晓, 等. 长期施肥对黄土丘陵坡地农田土壤质量和谷子产量的影响 [J]. 干旱地区农业研究, 2021, 39(5):76−83.

    GAO X F, YAN B S, WU C X, et al. Effects of long-term fertilization on soil quality and millet yield on slope farmland in loess hilly areas [J]. Agricultural Research in the Arid Areas, 2021, 39(5): 76−83.(in Chinese)
    [37] NGUYEN D B, ROSE M T, ROSE T J, et al. Effect of glyphosate and a commercial formulation on soil functionality assessed by substrate induced respiration and enzyme activity [J]. European Journal of Soil Biology, 2018, 85: 64−72. doi: 10.1016/j.ejsobi.2018.01.004
    [38] 喻岚晖. 藏北退化高寒草甸土壤酶化学计量学及微生物群落特征[D]. 杨凌: 中国科学院教育部水土保持与生态环境研究中心, 2021.

    YU L H. Soil enzyme stoichiometry and microbial community of degraded meadow on Northern Tibet[D]. Yangling: Research Center of Soil and Water Conservation and Eological Environment, Chinese Academy of Sciences and Mimistry Education, 2021. (in Chinese)
    [39] 史丽娟, 王辉民, 付晓莉, 等. 中亚热带典型人工林土壤酶活性及其化学计量特征 [J]. 应用生态学报, 2020, 31(6):1980−1988.

    SHI L J, WANG H M, FU X L, et al. Soil enzyme activities and their stoichiometry of typical plantations in mid-subtropical China [J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1980−1988.(in Chinese)
    [40] VAN BRUGGEN A H C, SEMENOV A M. In search of biological indicators for soil health and disease suppression [J]. Applied Soil Ecology, 2000, 15(1): 13−24. doi: 10.1016/S0929-1393(00)00068-8
    [41] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462(7274): 795−798. doi: 10.1038/nature08632
    [42] SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory [J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1): 313−343. doi: 10.1146/annurev-ecolsys-071112-124414
    [43] GUO Z, ZHANG X, GREEN S M, et al. Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the Karst Critical Zone observatory in Southwest China [J]. Land Degradation & Development, 2019, 30(16): 1916−1927.
    [44] WARING B G, WEINTRAUB S R, SINSABAUGH R L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils [J]. Biogeochemistry, 2014, 117(1): 101−113. doi: 10.1007/s10533-013-9849-x
    [45] XU Z W, YU G R, ZHANG X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biology and Biochemistry, 2017, 104: 152−163. doi: 10.1016/j.soilbio.2016.10.020
    [46] 罗攀, 陈浩, 肖孔操, 等. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响 [J]. 环境科学, 2017, 38(6):2577−2585.

    LUO P, CHEN H, XIAO K C, et al. Effects of topography, tree Species and soil properties on soil enzyme activity in karst regions [J]. Environmental Science, 2017, 38(6): 2577−2585.(in Chinese)
    [47] 胡琛, 贺云龙, 黄金莲, 等. 神农架 4 种典型针叶人工林土壤酶活性及其生态化学计量特征 [J]. 林业科学研究, 2020, 33(4):143−150.

    HU C, HE Y L, HUANG J L, et al. Soil enzyme activity and its ecological stoichiometry in four typical coniferous planted forests in Shennongjia National Nature Reserve, China [J]. Forest Research, 2020, 33(4): 143−150.(in Chinese)
    [48] 乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素 [J]. 生态学报, 2019, 39(6):1887−1896.

    QIAO H, MO X Q, LUO Y H, et al. Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations [J]. Acta Ecologica Sinica, 2019, 39(6): 1887−1896.(in Chinese)
    [49] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响 [J]. 生态学报, 2021, 41(10):4140−4149.

    SUN C L, WANG Y W, WANG C J, et al. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecologica Sinica, 2021, 41(10): 4140−4149.(in Chinese)
    [50] ZHANG W, XU Y D, GAO D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biology and Biochemistry, 2019, 134: 1−14. doi: 10.1016/j.soilbio.2019.03.017
    [51] 曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制 [J]. 应用生态学报, 2021, 32(2):521−528.

    ZENG Q X, ZHANG Q F, LIN K M, et al. Enzyme stoichiometry revealed that five years nitrogen addition aggravated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 521−528.(in Chinese)
    [52] 钟泽坤, 杨改河, 任成杰, 等. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征 [J]. 环境科学, 2021, 42(1):411−421.

    ZHONG Z K, YANG G H, REN C J, et al. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly region, China [J]. Environmental Science, 2021, 42(1): 411−421.(in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  78
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2022-01-28
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回