• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种肥料对巨菌草修复镉污染土壤的效果研究

罗泉达

罗泉达. 三种肥料对巨菌草修复镉污染土壤的效果研究 [J]. 福建农业学报,2022,37(3):398−404 doi: 10.19303/j.issn.1008-0384.2022.003.016
引用本文: 罗泉达. 三种肥料对巨菌草修复镉污染土壤的效果研究 [J]. 福建农业学报,2022,37(3):398−404 doi: 10.19303/j.issn.1008-0384.2022.003.016
LUO Q D. Fertilizer-enhanced Phytoextraction of Pennisetum sinese Roxb on Cadmium in Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(3):398−404 doi: 10.19303/j.issn.1008-0384.2022.003.016
Citation: LUO Q D. Fertilizer-enhanced Phytoextraction of Pennisetum sinese Roxb on Cadmium in Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(3):398−404 doi: 10.19303/j.issn.1008-0384.2022.003.016

三种肥料对巨菌草修复镉污染土壤的效果研究

doi: 10.19303/j.issn.1008-0384.2022.003.016
基金项目: 福建省蔬菜产业重大农技推广服务试点项目(KNJ152025)
详细信息
    作者简介:

    罗泉达(1978−),男,硕士,高级农艺师,主要从事农业生态环境研究(E-mail:nytlqd@163.com

  • 中图分类号: X 53

Fertilizer-enhanced Phytoextraction of Pennisetum sinese Roxb on Cadmium in Soil

  • 摘要:   目的  探讨施用不同肥料条件下,巨菌草对镉(Cd)污染农田土壤的野外实际修复效果。  方法  以矿区周边Cd污染农田土壤为对象进行田间试验,设置对照(CK)、氯化铵(NH4Cl)、氯化钾(KCl)、尿素[CO(NH2)2]等4个处理,肥料用量为0.6 kg·m−2,分析不同处理下巨菌草对土壤Cd吸收富集的影响。  结果  NH4Cl和KCl处理均能显著增加巨菌草叶片Cd含量(P<0.05),而CO(NH2)2处理对巨菌草Cd含量的影响不显著。巨菌草生长150 d时,NH4Cl、CO(NH2)2和KCl处理均显著提高巨菌草地上部的生物量(P<0.05);对照处理下,巨菌草地上部Cd提取量为6.52 mg·株−1,NH4Cl、CO(NH2)2和KCl处理使地上部Cd提取量分别增加了70.19%、43.58%和59.05%,NH4Cl处理显著提高巨菌草对Cd的迁移系数和生物富集系数。NH4Cl、CO(NH2)2和KCl处理均提高了巨菌草对Cd提取速率,缩短对Cd污染土壤的修复年限。以150 d作为收获周期(一年收获2茬),NH4Cl处理使土壤Cd含量降低至国家农用地土壤污染风险筛选值(pH≤5.5,Cd≤0.3 mg·kg−1)所需的理论修复时间最短,为9.07年。此外,巨菌草在90~150 d期间对Cd的平均提取速率是1~90 d生长期间的1.13~2.58倍。  结论  建议以150 d作为收获周期(一年收获2茬),NH4Cl可作为巨菌草提取土壤Cd的强化剂。
  • 图  1  不同处理土壤pH和有效态镉含量变化

    注:不同小写字母表示处理间差异显著(P<0.05),下同。

    Figure  1.  pH (A) and DTPA-extractable Cd (B) in soil under fertilizer treatments after king grass harvest

    Note: Data with different lowercase letters indicate significant differences among treatments (P<0.05). Same for the following figures.

    图  2  不同处理下巨菌草各部位的干重

    Figure  2.  Dry weights of tissues from king grass grown on soil treated by different fertilizers

    图  3  不同处理下巨菌草各部位Cd含量

    Figure  3.  Cd concentration in tissues of king grass grown on soil treated by different fertilizers

    图  4  不同处理对巨菌草镉提取量的影响

    Figure  4.  Effect of treatments on Cd-extraction of king grass based on Cd contents in leaves and roots of plants grown on soil treated by different fertilizers

    表  1  不同处理对Cd在土壤-巨菌草体系中的转移系数和富集系数的影响

    Table  1.   Coefficients of transfer and bioconcentration between soil and king grass under different fertilizer treatments

    处理
    Treatments
    90 d 150 d
    TFTF′BCFDTPA TFTF′BCFDTPA
    CK 0.73±0.01 b 4.10±0.22 c 2.17±0.11 b 0.46±0.02 b 5.08±0.44 b 2.25±0.07 b
    NH4Cl 1.09±0.02 a 7.29±1.44 a 2.35±0.10 ab 0.57±0.02 a 8.94±0.38 a 4.13±0.17 a
    CO(NH2)2 0.71±0.02 b 6.09±0.33 b 2.38±0.09 a 0.44±0.02 b 7.77±0.66 a 2.17±0.08 b
    KCl 0.57±0.03 c 3.93±1.35 c 1.96±0.08 c 0.37±0.02 c 5.86±0.44 b 3.96±0.11 a
    注:同列不同字母表示不同处理间存在显著性差异(P<0.05)。
    Note: Different letters in the same column indicate significant difference at P<0.05.
    下载: 导出CSV

    表  2  不同处理巨菌草对Cd污染土壤的修复年限和提取速率

    Table  2.   Time and extraction rate of Cd-removal from soil by king grass under different fertilizer treatments

    处理
    Treatments
    修复年限 The time for remediation/a 株提取速率 The rate of extraction/(mg·a−1
    全量基准
    Based on soil total Cd content
    有效量基准
    Based on DTPA-Cd
    1~90 d1~150 d90~150 d
    90 d150 d 90 d150 d
    CK 15.21 15.49 9.08 9.15 13.32 15.60 19.08
    NH4Cl 10.25 9.07 7.33 6.42 19.92 26.64 36.72
    CO(NH2)2 12.61 10.78 7.57 6.26 16.08 22.44 32.16
    KCl 13.32 9.73 7.4 5.37 15.24 24.96 39.36
    下载: 导出CSV
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014.
    [2] CLEMENS S, AARTS M G M, THOMINE S, et al. Plant science: The key to preventing slow cadmium poisoning[J]. 2013, 18: 92−99.
    [3] SPONZA D, KARAOGLU N. Environmental geochemistry and pollution studies of Aliaga metal industry district[J]. 2002, 27: 541−553.
    [4] JIE L, WEI Q, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. 2009, 238: 209−214.
    [5] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives [J]. Chemosphere, 2017, 171: 710−721. doi: 10.1016/j.chemosphere.2016.12.116
    [6] LIU Z L, CHEN W, HE X Y, et al. Effects of cadmium on growth and accumulation characteristics in leaf bud of Lonicera japonica Thunb[C]. International Symposium on Water Resource and Environmental Protection IEEE, 2011: 2928−2930.
    [7] ZHANG S, LIN H, DENG L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. [J]. Ecological Engineering, 2013, 51(2): 133−139.
    [8] SUN Y, ZHOU Q, WANG L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator [J]. Journal of Hazardous Materials, 2009, 161(2): 808−814.
    [9] 杨姝, 贾乐, 毕玉芬, 等. 7种紫花苜蓿对云南某铅锌矿区土壤镉铅的累积特征及品质差异 [J]. 农业资源与环境学报, 2018, 35(3):222−228.

    YANG S, JIA L, BI Y F, et al. Interspecific differences and accumulative characteristics of cadmium and lead about seven alfalfa (Medicago Sativa L. ) cultivars in a Lead-Zinc mine of Yunnan, China [J]. Journal of Agricultural Resources and Environment, 2018, 35(3): 222−228.(in Chinese)
    [10] ZHANG X F, XIA H P, ZHI A L, et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils [J]. Bioresource Technology, 2010, 101(6): 2063−2066. doi: 10.1016/j.biortech.2009.11.065
    [11] CHEN Y H, HU L, LIU X L, et al. Influences of king grass (Pennisetum sinese Roxb)-enhanced approaches for phytoextraction and microbial communities in multi-metal contaminated soil [J]. Geoderma, 2017, 307: 253−266. doi: 10.1016/j.geoderma.2017.07.042
    [12] ZACCHEO P, CRIPPA L, PASTA V. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower [J]. Plant & Soil., 2006, 283(1/2): 43−56.
    [13] 宋珺宇. 氮素形态对杨树耐镉胁迫及吸收、富集效率的影响[D]. 杨凌: 西北农林科技大学, 2019.

    SONG J Y. Effects of nitrogen forms on cadmium tolerance, absorption and enrichment efficiency of poplar[D]. Yangling: Northwest Agriculture and Forestry University, 2019.
    [14] 聂俊华, 刘秀梅, 王庆仁. Pb(铅)富集植物品种的筛选 [J]. 农业工程学报, 2004(4):255−258. doi: 10.3321/j.issn:1002-6819.2004.04.061

    NIE J H, LIU X M, WANG Q R. Screening out of Pb hypertolerant plant species [J]. Transactions of the CSAE, 2004(4): 255−258.(in Chinese) doi: 10.3321/j.issn:1002-6819.2004.04.061
    [15] ELOUEAR Z, BOUHAMED F, BOUJELBEN N, et al. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants [J]. Sustainable Environment Research., 2016, 26(3): 131−135. doi: 10.1016/j.serj.2016.04.004
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 12−14.
    [17] CHEN Y H, LIU M J, DENG Y W, et al. Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, napier grass ( Pennisetum purpureum Schumach) [J]. Journal of Soils & Sediments., 2017, 17(12): 2786−2796.
    [18] WANG J C, CHEN X F, CHU S H, et al. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum [J]. Environment Science and Pollution Research, 2021, 28: 13955−13969. doi: 10.1007/s11356-020-11505-5
    [19] SHANG X S, XUE W X, JIANG Y, et al. Ca alleviated Cd-induced toxicity in salix matsudana by affecting Cd absorption, translocation, subcellular distribution, and chemical forms[J]. BMC Plant Biology, 2020. DOI: 10.21203/rs.2.24734/v1
    [20] SMOLDERS E, MCLAUGHLIN M J. Effect of Cl on Cd uptake by swiss chard in nutrient solutions [J]. Plant and Soil, 1996, 179(1): 57−64. doi: 10.1007/BF00011642
    [21] SMOLDERS E, MCLAUGHLIN MJ. Chloride increases cadmium uptake in swiss chard in a resin-buffered nutrient solution [J]. Soil Science Society of America Journal, 1996, 60(5): 1443−1447. doi: 10.2136/sssaj1996.03615995006000050022x
    [22] ZACCHEO P, CRIPPA L, PASTA V D M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower [J]. Plant and Soil, 2006, 283(1/2): 43−56.
    [23] 王剑, 杨婷婷, 朱有为, 等. 田间条件下施用石灰石及调理剂降低土壤镉可提取性的效应 [J]. 水土保持学报, 2021, 35(4):334−340, 368.

    WANG J, YANG T T, ZHU Y W, et al. Effects of limestone and conditioner on reducing soil Cd extractability under field conditions [J]. Journal of Soil and Water Conservation, 2021, 35(4): 334−340, 368.(in Chinese)
    [24] GRUTER R, COSTEROUSSE B, BERTONI A, et al. Green manure and long-term fertilization effects on available soil zinc and cadmium and their accumulation by wheat (Triticum aestivum L. ) at different growth stages [J]. The Science of the Total Environment, 2017, 599-600: 1330−1343. doi: 10.1016/j.scitotenv.2017.05.070
    [25] LIU W X, ZHANG C J, HU P J, et al. Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii [J]. Environmental Science and Pollution Research, 2016, 23: 1246−1253. doi: 10.1007/s11356-015-5231-y
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  191
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-14
  • 修回日期:  2021-12-12
  • 网络出版日期:  2022-02-07
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回