• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信号肽筛选优化提高耐热α-环糊精酶在枯草芽胞杆菌中的表达

陈龙军 林陈强 贾宪波 方宇 张慧 陈济琛

陈龙军,林陈强,贾宪波,等. 信号肽筛选优化提高耐热α-环糊精酶在枯草芽胞杆菌中的表达 [J]. 福建农业学报,2022,37(3):414−422 doi: 10.19303/j.issn.1008-0384.2022.003.018
引用本文: 陈龙军,林陈强,贾宪波,等. 信号肽筛选优化提高耐热α-环糊精酶在枯草芽胞杆菌中的表达 [J]. 福建农业学报,2022,37(3):414−422 doi: 10.19303/j.issn.1008-0384.2022.003.018
CHEN L J, LIN C Q, JIA X B, et al. Enhanced Thermophilic α-Cyclodextrin Glycosyltransferase Expression by Optimizing Target Signal Peptide in Bacillus subtilis [J]. Fujian Journal of Agricultural Sciences,2022,37(3):414−422 doi: 10.19303/j.issn.1008-0384.2022.003.018
Citation: CHEN L J, LIN C Q, JIA X B, et al. Enhanced Thermophilic α-Cyclodextrin Glycosyltransferase Expression by Optimizing Target Signal Peptide in Bacillus subtilis [J]. Fujian Journal of Agricultural Sciences,2022,37(3):414−422 doi: 10.19303/j.issn.1008-0384.2022.003.018

信号肽筛选优化提高耐热α-环糊精酶在枯草芽胞杆菌中的表达

doi: 10.19303/j.issn.1008-0384.2022.003.018
基金项目: 福建省农业科学院对外合作项目(DWHZ2021-17);福建省科技计划公益类专项(2022R1022-5、2018R1022-7);福建省农业科学院探索创新项目(AA2018-13);
详细信息
    作者简介:

    陈龙军(1983−),男,硕士,助理研究员,主要从事生物化工、酶工程及发酵工程等方面的研究(E-mail:monkeyirene@163.com

    通讯作者:

    陈济琛(1964−),男,研究员,主要从事微生物菌剂研究(E-mail:chenjichen2001@163.com

  • 中图分类号: Q 786

Enhanced Thermophilic α-Cyclodextrin Glycosyltransferase Expression by Optimizing Target Signal Peptide in Bacillus subtilis

  • 摘要:   目的  探索嗜热α-环糊精葡萄糖基转移酶(α-CGTase)在枯草芽胞杆菌(Bacillus subtilis RIK1285)中的高效胞外表达条件。  方法  以来源于枯草芽胞杆菌的173种信号肽为基础构建信号肽文库,筛选获得9条表达效率更高的信号肽,其中citH信号肽引导分泌效率最高。在此基础上,为进一步优化α-CGTase的分泌表达,对信号肽citH的Gly2、Asn3及Thr4进行饱和突变,并比较不同突变体的引导分泌效率。  结果  突变体G2R-N3K-T4L-CGT的引导分泌效率最高,重组枯草芽胞杆菌的胞外α-CGTase活力高达(14.2±0.11 )U·mL−1,相比未突变信号肽[(9.6±0.29 )U·mL−1],分泌效率提高了47.9%;是野生菌株嗜热地芽胞杆菌Geobacillus caldoxylosilyticus.CHB1(0.66 U·mL−1)的21.5倍。重组α-CGTase的最适反应pH值为6.0,最适反应温度为60 ℃,在50 ℃以内稳定;Mg2+、Ca2+对α-环糊精酶活性具有一定的激活作用。  结论  信号肽对环糊精酶在芽胞杆菌中的高效表达具有重要影响,为外源蛋白在芽胞杆菌中的表达提供一定借鉴。
  • 图  1  不同信号肽对目的蛋白的影响

    注:图中小写字母表示不同处理在P<0.05水平下差异显著。下图同。

    Figure  1.  Effects of signal peptides on target protein production

    Note: Data with different letters indicate significant differences among treatments at P<0.05. Same for following figures.

    图  2  不同信号肽SDS-PAGE 电泳结果

    注:M:protein marker;1:对照;2:aprE;3:citH;4:ybdG;5:amyE; 6:nprE; 7:bpr; 8:bglS; 9:bglC; 10:sacB; 11:yweA

    Figure  2.  SDS-PAGE analysis on signal peptides

    Note: M: protein marker; 1: control; 2: aprE; 3: citH; 4: ybdG;5: amyE; 6: nprE; 7: bpr; 8: bglS; 9:bglC; 10:sacB; 11:yweA.

    图  3  citH信号肽Gly2饱和突变对α-环糊精酶分泌表达的影响

    Figure  3.  Effect of Gly2 saturation mutation of citH on α-CGTase activity

    图  4  citH信号肽Asn3饱和突变对α-环糊精酶分泌表达的影响

    Figure  4.  Effect of Asn3 saturation mutation of citH on α-CGTase activity

    图  5  citH信号肽Thr4饱和突变对α-环糊精酶分泌表达的影响

    Figure  5.  Effect of Thr4 saturation mutation of citH on α-CGTase activity

    图  6  citH信号肽多重突变对α-环糊精酶分泌表达的影响

    Figure  6.  Effect of multiple mutation of citH on α-CGTase activity

    图  7  不同信号肽的SDS-PAGE 电泳图分析

    注:M:Protein Marker;1:对照;2:citH;3:G2R;4:N3K;5:T4L;6:G2R/N3K;7:G2R/T4L;8:N3K/ T4L;9:G2R/N3K/T4L。

    Figure  7.  SDS-PAGE analysis on signal peptide mutant

    Note: M: Protein Marker; 1: control; 2: citH; 3: G2R; 4: N3K5:T4L; 6: G2R/N3K 7:G2R/T4L; 8:N3K/ T4L9:G2R/N3K/T4L.

    图  8  pH对α-环糊精酶活力的影响

    Figure  8.  pH dependence of α-CGTase activity

    图  9  温度对α-环糊精酶活力的影响

    Figure  9.  Temperature dependence of α-CGTase activity

    图  10  不同温度下α-环糊精酶的热稳定性

    Figure  10.  Thermal stability of α-CGTase activity

    图  11  不同金属离子及抑制剂对α-环糊精酶活力的影响

    Figure  11.  Effect of metal ions and inhibitors on α-CGTase activity

    表  1  citH信号肽第二位Gly饱和突变引物

    Table  1.   Primers for saturated mutation of G2

    突变体
    Muntants
    引物名称
    Primer name
    引物序列
    Primer sequence(5′–3′)
    G2F G2F-F
    G2F-R
    AGAGGGACGCGTATGTTCAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTGAACATACGCGTCCCTCT
    G2M G2M-F
    G2M-R
    AGAGGGACGCGTATGATGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCATCATACGCGTCCCTCT
    G2P G2P-F
    G2P-R
    AGAGGGACGCGTATGCCGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCGGCATACGCGTCCCTCT
    G2A G2A-F
    G2A-R
    AGAGGGACGCGTATGGCAAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTTGCCATACGCGTCCCTCT
    G2Y G2Y-F
    G2Y-R
    AGAGGGACGCGTATGTATAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTATACATACGCGTCCCTCT
    G2H G2H-F
    G2H-R
    AGAGGGACGCGTATGCATAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTATGCATACGCGTCCCTCT
    G2K G2K-F
    G2K-R
    AGAGGGACGCGTATGAAGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCTTCATACGCGTCCCTCT
    G2D G2D-F
    G2D-R
    AGAGGGACGCGTATGGATAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTATCCATACGCGTCCCTCT
    G2C G2C-F
    G2C-R
    AGAGGGACGCGTATGTGCAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTGCACATACGCGTCCCTCT
    G2Q G2Q-F
    G2Q-R
    AGAGGGACGCGTATGCAGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCTGCATACGCGTCCCTCT
    G2L G2L-F
    G2L-R
    AGAGGGACGCGTATGCTAAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTTAGCATACGCGTCCCTCT
    G2I G2I-F
    G2I-R
    AGAGGGACGCGTATGATTAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTAATCATACGCGTCCCTCT
    G2V G2V-F
    G2V-R
    AGAGGGACGCGTATGGTGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCACCATACGCGTCCCTCT
    G2S G2S-F
    G2S-R
    AGAGGGACGCGTATGTCTAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTAGACATACGCGTCCCTCT
    G2T G2T-F
    G2T-R
    AGAGGGACGCGTATGACCAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTGGTCATACGCGTCCCTCT
    G2N G2N-F
    G2N-R
    AGAGGGACGCGTATGAATAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTATTCATACGCGTCCCTCT
    G2E G2E-F
    G2E-R
    AGAGGGACGCGTATGGAAAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTTTCCATACGCGTCCCTCT
    G2R G2R-F
    G2R-R
    AGAGGGACGCGTATGCGGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCCGCATACGCGTCCCTCT
    G2W G2R-F
    G2R-R
    AGAGGGACGCGTATGTGGAATACTCGTAAAAAAG
    CTTTTTTACGAGTATTCCACATACGCGTCCCTCT
    注:带下划线的碱基序列为突变氨基酸的碱基密码子。
    Note: the underlined base is the base codon of the mutant amino acid.
    下载: 导出CSV

    表  2  信号肽氨基酸序列表

    Table  2.   Amino acid sequence of signal peptide

    信号肽名称
    Signal peptide
    信号肽氨基酸序列
    Signal peptide amino acid sequence
    pBE-aprE-CGT MRSKKLWISLLFALTLIFTMAFSNMSVQA
    pBE-citH-CGT MGNTRKKVSVIGAGFTGATTAFLIAQKELADV
    pBE-ybdG-CGT MKTLWKVLKIVFVSLAALVLLVSVS
    pBE-amyE-CGT MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAASA
    pBE-nprE-CGT MGLGKKLSVAVAASFMSLSISLPGVQA
    pBE-bpr-CGT MRKKTKNRLISSVLSTVVISSLLFPGAAGA
    pBE-bglS-CGT MPYLKRVLLLLVTGLFMSLFAVTATASA
    pBE-bglC-CGT MKRSISIFITCLLITLLTMGGMIASPASA
    pBE-sacB-CGT MNIKKFAKQATVLTFTTALLAGGATQAFA
    pBE-yweA-CGT MLKRTSFVSSLFISSAVLLSILLPSGQAHA
    下载: 导出CSV
  • [1] DEL VALLE E M M. Cyclodextrins and their uses: A review [J]. Process Biochemistry, 2004, 39(9): 1033−1046. doi: 10.1016/S0032-9592(03)00258-9
    [2] LI Z F, WANG M, WANG F, et al. Gamma-Cyclodextrin: a review on enzymatic production and applications [J]. Applied Microbiology and Biotechnology, 2007, 77(2): 245−255. doi: 10.1007/s00253-007-1166-7
    [3] SZEJTLI J. Introduction and general overview of cyclodextrin chemistry [J]. Chemical Reviews, 1998, 98(5): 1743−1754.
    [4] ASTRAY G, GONZALEZ-BARREIRO C, MEJUTO J C, et al. A review on the use of cyclodextrins in foods [J]. Food Hydrocolloids, 2009, 23(7): 1631−1640. doi: 10.1016/j.foodhyd.2009.01.001
    [5] SZENTE L, SZEMÁN J. Cyclodextrins in analytical chemistry: Host-guest type molecular recognition [J]. Analytical Chemistry, 2013, 85(17): 8024−8030. doi: 10.1021/ac400639y
    [6] DER VEEN BA V, UITDEHAAG J C, DIJKSTRA B W, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity [J]. Biochimica et Biophysica Acta, 2000, 1543(2): 336−360. doi: 10.1016/S0167-4838(00)00233-8
    [7] KELLY R M, DIJKHUIZEN L, LEEMHUIS H. The evolution of cyclodextrin glucanotransferase product specificity [J]. Applied Microbiology and Biotechnology, 2009, 84(1): 119−133. doi: 10.1007/s00253-009-1988-6
    [8] LEEMHUIS H, KELLY R M, DIJKHUIZEN L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications [J]. Applied Microbiology and Biotechnology, 2010, 85(4): 823−835. doi: 10.1007/s00253-009-2221-3
    [9] LIU L, LIU Y F, SHIN H D, et al. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology [J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6113−6127. doi: 10.1007/s00253-013-4960-4
    [10] VAN DIJL J M, HECKER M. Bacillus subtilis: From soil bacterium to super-secreting cell factory [J]. Microbial Cell Factories, 2013, 12: 3. doi: 10.1186/1475-2859-12-3
    [11] 张佳瑜, 吴丹, 李兆丰, 等. 来源于软化芽孢杆菌的环糊精葡萄糖基转移酶在毕赤酵母和枯草杆菌中的表达 [J]. 生物工程学报, 2009, 25(12):1948−1954. doi: 10.3321/j.issn:1000-3061.2009.12.026

    ZHANG J Y, WU D, LI Z F, et al. Expression of Paenibacillus macerans cyclodextrin glycosyltransferase in Pichia pastoris and Bacillus subtilis [J]. Chinese Journal of Biotechnology, 2009, 25(12): 1948−1954.(in Chinese) doi: 10.3321/j.issn:1000-3061.2009.12.026
    [12] KANG Z, YANG S, DU G C, et al. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species [J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(11): 1599−1607. doi: 10.1007/s10295-014-1506-4
    [13] 姚小琳, 张涛, 江波. 来源于Paenibacillus campinasensis SK13.001的β-环糊精葡萄糖基转移酶在大肠杆菌中的表达和反应条件优化 [J]. 食品与发酵工业, 2020, 46(12):153−157,165.

    YAO X L, ZHANG T, JIANG B. Expression of β-cyclodextrin glucosyltransferase from Paenibacillus campinasensis SK13.001 in Escherichia coli and the optimization of reaction conditions [J]. Food and Fermentation Industries, 2020, 46(12): 153−157,165.(in Chinese)
    [14] 黄燕, 汪天, 吴敬, 等. 重组Bacillus subtilis产B. stearothermophilus环糊精葡萄糖基转移酶的发酵优化 [J]. 基因组学与应用生物学, 2020, 39(2):629−635.

    HUANG Y, WANG T, WU J, et al. Fermentation optimization of B. stearothermophilus cyclo-dextrin glucosyl transferase produced by recombinant Bacillus subtilis [J]. Genomics and Applied Biology, 2020, 39(2): 629−635.(in Chinese)
    [15] 陈龙军, 陈济琛, 林晓栩, 等. 嗜热芽孢杆菌CHB1环糊精酶基因优化及其在毕赤酵母中的表达 [J]. 食品与生物技术学报, 2018, 37(9):994−999. doi: 10.3969/j.issn.1673-1689.2018.09.014

    CHEN L J, CHEN J C, LIN X X, et al. Codon optimization and expression of cyclodextrin glycosyltransferase from gebacillius sp. CHB1 in Pichia pastoris [J]. Journal of Food Science and Biotechnology, 2018, 37(9): 994−999.(in Chinese) doi: 10.3969/j.issn.1673-1689.2018.09.014
    [16] 陈龙军, 陈济琛, 林新坚, 等. 环糊精酶基因在毕赤酵母中的组成型表达 [J]. 福建农业学报, 2017, 32(1):82−86.

    CHEN L J, CHEN J C, LIN X J, et al. Constitutive expression of cyclodextrin glycosyltransferase in Pichia pastoris [J]. Fujian Journal of Agricultural Sciences, 2017, 32(1): 82−86.(in Chinese)
    [17] 蔡海松, 林晓栩, 郭永华, 等. 信号肽及化学通透剂对环糊精葡萄糖基转移酶胞外分泌的影响 [J]. 微生物学通报, 2017, 44(3):601−610.

    CAI H S, LIN X X, GUO Y H, et al. Effects of different signal peptides and chemical penetrators on extracellular production of recombinant cyclodextrin glycosyltransferase [J]. Microbiology China, 2017, 44(3): 601−610.(in Chinese)
    [18] GREEN M R, SAMBROOK J. Molecular cloning–A laboratory manual[M]. New York: Cold spring harbor laboratory, 2012.
    [19] 刘金岚, 付刚, 董会娜, 等. 通过信号肽筛选优化耐高温α-淀粉酶在枯草芽孢杆菌中的分泌 [J]. 工业微生物, 2017, 47(1):17−23. doi: 10.3969/j.issn.1001-6678.2017.01.003

    LIU J L, FU G, DONG H N, et al. Optimization of thermostable α-amylase secretion by screening of optimal signal peptide in Bacillus subtilis [J]. Industrial Microbiology, 2017, 47(1): 17−23.(in Chinese) doi: 10.3969/j.issn.1001-6678.2017.01.003
    [20] 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达 [J]. 食品科学, 2018, 39(18):100−108. doi: 10.7506/spkx1002-6630-201818016

    YUAN L, ZENG J, GUO J J, et al. Efficient secretory expression of hyperthermoacidophilic α-amylase PFA in Bacillus subtilis WB600 [J]. Food Science, 2018, 39(18): 100−108.(in Chinese) doi: 10.7506/spkx1002-6630-201818016
    [21] GUAN C R, CUI W J, CHENG J T, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis [J]. New Biotechnology, 2016, 33(3): 372−379. doi: 10.1016/j.nbt.2016.01.005
    [22] ZHANG W W, YANG M M, YANG Y D, et al. Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening [J]. Applied Microbiology and Biotechnology, 2016, 100(20): 8745−8756. doi: 10.1007/s00253-016-7615-4
    [23] BROCKMEIER U, CASPERS M, FREUDL R, et al. Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria [J]. Journal of Molecular Biology, 2006, 362(3): 393−402. doi: 10.1016/j.jmb.2006.07.034
    [24] ANNÉ J, ECONOMOU A, BERNAERTS K. Protein secretion in gram-positive bacteria: From multiple pathways to biotechnology [J]. Current Topics in Microbiology and Immunology, 2017, 404: 267−308.
    [25] 祝发明, 刘辉, 曹要玲, 等. 枯草芽孢杆菌AmyX基因信号肽性能优化研究 [J]. 西北农林科技大学学报(自然科学版), 2006, 34(9):11−16.

    ZHU F M, LIU H, CAO Y L, et al. Studies on optimizing the signal peptide of AmyX protein from B. subtilis [J]. Journal of Northwest A& F University of Agriculture and Forestry (Natural Science Edition), 2006, 34(9): 11−16.(in Chinese)
    [26] CASPERS M, BROCKMEIER U, DEGERING C, et al. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide [J]. Applied Microbiology and Biotechnology, 2010, 86(6): 1877−1885. doi: 10.1007/s00253-009-2405-x
    [27] 叶学军. 地芽孢杆菌CHB1产CGTase的分离纯化及基因的克隆与表达[D]. 福州: 福州大学, 2014.

    YE X J. Purification, characterization, gene cloning and expression of cyclodextrin glycosyltransferase from Geobacillus caldoxylosilyticus CHB1[D]. Fuzhou: Fuzhou University, 2014. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  209
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-27
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回