• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CsZFP2基因的克隆及其在烟草中的抗旱功能分析

李婉雪 姚新转 张宝会 刘洋

李婉雪,姚新转,张宝会,等. CsZFP2基因的克隆及其在烟草中的抗旱功能分析 [J]. 福建农业学报,2022,37(4):453−459 doi: 10.19303/j.issn.1008-0384.2022.004.005
引用本文: 李婉雪,姚新转,张宝会,等. CsZFP2基因的克隆及其在烟草中的抗旱功能分析 [J]. 福建农业学报,2022,37(4):453−459 doi: 10.19303/j.issn.1008-0384.2022.004.005
LI W X, YAO X Z, ZHANG B H, et al. Connection between Tea ZFP2 and Drought Resistance of Tobacco Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):453−459 doi: 10.19303/j.issn.1008-0384.2022.004.005
Citation: LI W X, YAO X Z, ZHANG B H, et al. Connection between Tea ZFP2 and Drought Resistance of Tobacco Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):453−459 doi: 10.19303/j.issn.1008-0384.2022.004.005

CsZFP2基因的克隆及其在烟草中的抗旱功能分析

doi: 10.19303/j.issn.1008-0384.2022.004.005
基金项目: 贵州省茶产业技术创新中心项目(黔科中引地[2017]4005);贵州省优秀青年科技人才培养项目(黔科合平台人才[2019]5651);中国烟草总公司贵州省公司重点研发项目(中烟黔科[2021]1号2021XM04);贵州省科技计划项目(黔科合支撑[2021]一般111)
详细信息
    作者简介:

    李婉雪(1997−),女,硕士研究生,研究方向:农艺与种业(E-mail:1114652676@qq.com

    通讯作者:

    刘洋 (1978−),女,副教授,博士研究生,研究方向:转基因生物农药 (E-mail:652493683@qq.com)

  • 中图分类号: Q 784

Connection between Tea ZFP2 and Drought Resistance of Tobacco Plants

  • 摘要:   目的  对茶树ZFP2基因应答干旱胁迫表达进行分析,为进一步深入研究茶树ZFP2基因在植物生长发育与抵御干旱胁迫中的作用机制提供科学数据。  方法  本实验室在前期工作中已通过酵母单杂筛选出一个与F3’5’H基因启动子区域互作的锌指蛋白,利用生物信息学的方法对茶树ZPF2的蛋白结构进行预测和分析,通过农杆菌介导法将CsZFP2基因转入烟草,在模拟干旱胁迫条件下进行功能验证。  结果  茶树(Camellia sinensis,XM_028257969.1)锌指蛋白的蛋白结构域与烟草(Nicotiana tabacum,XP_016463943.1)的锌指蛋白相似性为68.57%。茶树锌指蛋白基因内含子数为13个,蛋白长度为1 233 a,蛋白分子量为141 204.45,等电点为5.9,等电点Pi<7表明茶树锌指蛋白富含酸性氨基酸;CsZPF2编码蛋白质主要二级结构为α螺旋且该蛋白是由α-螺旋和β-转角组成无规则卷曲的三维空间结构; CsZPF2编码蛋白质亚细胞定位在细胞核且氨基酸序列小于零部分多于50%,为亲水性蛋白;在自然干旱胁迫28 d后野生型烟草与转基因烟草底部老叶均明显发黄,但野生型烟草底部老叶基本完全失绿,呈枯萎状态,而转基因烟草底部叶片呈轻度萎蔫状态,大部分仍然呈现绿色。  结论  CsZFP2基因能够响应干旱胁迫,并在干旱胁迫应答中起到作用,过表达CsZFP2的转基因植株比野生型植株更具抗旱能力。
  • 图  1  锌指蛋白转录因子的过表达载体

    Figure  1.  Overexpression vector of ZFP transcription factor

    图  2  CsZPF2编码蛋白质的二级结构预测

    注:竖条纹图和峰图,代表每个位点的预测结果信息,相同的颜色代表相同的结构。

    Figure  2.  Predicted secondary structure of CsZPF protein

    Note:The vertical fringe pattern and peak pattern represent the prediction result information of each locus, and the same color represents the same structure.

    图  3  茶树ZPF2编码蛋白质的三级结构预测

    Figure  3.  Predicted tertiary structure of CsZPF protein

    图  4  CsZPF2编码蛋白质序列的亲疏水性分析

    Figure  4.  Hydrophilicity and hydrophobicity of CsZPF2 protein sequence

    图  5  茶树锌指蛋白与其他物种的蛋白质序列同源比对

    Figure  5.  Homologous analysis on ZPF protein sequences of various species

    图  6  茶树锌指蛋白与其他物种锌指蛋白基因的系统进化分析

    Figure  6.  Phylogenetic relationship between ZFP of C. sinensis and other species

    图  7  干旱胁迫对烟草植株生长的影响

    注:A:移栽烟草 B:干旱胁迫0 d C:干旱胁迫28 d。

    Figure  7.  Effect of drought stress on growth of tobacco plants

    Note: A: Transplanted tobacco; B: 0 d under drought stress; C: 28 d under drought stress.

    表  1  11个物种锌指蛋白基因的特征

    Table  1.   Characteristics of ZFP genes in 11 species

    基因名称
    Gene Name
    缩写
    Abbrev
    基因 Gene 蛋白 Protein
    染色体
    Chr.No
    开始
    Start
    终止
    End
    内含子数
    No. of Intron
    蛋白长度
    Length
    等电点
    pI
    蛋白分子量
    MW (Da)
    猕猴桃 Actinidia chinensis var. Chinensis PSR84926.1 8 21348050 21361229 12 1202 5.62 142287.43
    灰山杜鹃 Rhododendron griersonianum KAG5536119.1 29 6694780 6711730 14 1256 5.81 135123.75
    甜樱桃 Prunus avium XP_021810862.1 Unknow 101840 109887 13 1250 5.90 141072.2
    水蜜桃 Prunus persica ONI09200.1 5 17316836 17317953 11 1204 5.87 135936.84
    杏花 Prunus armeniaca CAB4311713.1 ContigORA5G 16168668 16176202 13 1250 5.90 141162.37
    笋瓜 Cucurbita maxima XP_023002699.1 Unknow 5837622 5847224 13 1256 5.83 141740.74
    茶树 Camellia sinensis XM_028257969.1 Unknow 748792 762882 13 1233 5.9 141204.45
    烟草 Nicotiana tabacum XP_016463943.1 Unknow 11729 22582 13 1234 5.82 141724.7
    梅花 Prunus mume XP_008240245.1 7 1633036 16340978 13 1250 5.87 139916.92
    南瓜 Cucurbita moschata XP_022930579.1 Unknow 1396522 1400153 13 1256 5.97 139899.6
    月季 Rosa chinensis XP_024174941.1 7 5794370 5802666 13 1238 5.94 139029.55
    注: Contig: 未挂载到染色体上的序列片段。
    Note: Contig: Sequence fragments not attached to the chromosom.
    下载: 导出CSV
  • [1] CROFT K D. The chemistry and biological effects of flavonoids and phenolic acidsa [J]. Annals of the New York Academy of Sciences, 1998, 854(1): 435−442.
    [2] TAYLOR L P, GROTEWOLD E. Flavonoids as developmental regulators [J]. Current Opinion in Plant Biology, 2005, 8(3): 317−323. doi: 10.1016/j.pbi.2005.03.005
    [3] CHAVES M M, MAROCO J P, PEREIRA J S. Understanding plant responses to drought - from genes to the whole plant [J]. Functional Plant Biology:FPB, 2003, 30(3): 239−264. doi: 10.1071/FP02076
    [4] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology, 2003, 6(5): 410−417. doi: 10.1016/S1369-5266(03)00092-X
    [5] ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53: 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
    [6] ZANG D D, WANG C, JI X Y, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities [J]. Plant Science, 2015, 235: 111−121. doi: 10.1016/j.plantsci.2015.02.016
    [7] CHAI G H, HU R B, ZHANG D Y, et al. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa) [J]. BMC Genomics, 2012, 13: 253. doi: 10.1186/1471-2164-13-253
    [8] 陈帅. 烟草类黄酮调控及其在盐胁迫中的作用机理研究[D]. 北京: 中国农业科学院, 2020.

    CHEN S. Regulation mechanism of tobacco flavonoid biosynthesis and their function in salt resistance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
    [9] YAMAJI N, HUANG C F, NAGAO S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice [J]. The Plant Cell, 2009, 21(10): 3339−3349. doi: 10.1105/tpc.109.070771
    [10] 黄骥. 水稻非生物胁迫相关锌指蛋白基因的克隆与功能分析[D]. 南京: 南京农业大学, 2005.

    HUANG J. Cloning and functional analysis of abiotic stress-related zinc finger protein genes from rice(Oryza sativa L. )[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
    [11] Horsch R, Fry J, Hoffmann N, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227(4691): 1229−1231.
    [12] 刘洋, 姚新转, 吕立堂, 等. 高粱SbSKIP基因的克隆及其在烟草中的抗旱功能分析 [J]. 农业生物技术学报, 2016, 24(10):1500−1511.

    LIU Y, YAO X Z, LV L T, et al. Cloning of SbSKIP gene from Sorghum (Sorghum bicolor) and analysis of drought-resistant function in tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1500−1511.(in Chinese)
    [13] 陈慧. 水稻锌指蛋白ZFP157及AWPM-19家族蛋白OsPM19L1的功能研究[D]. 南京: 南京农业大学, 2015.

    CHEN H. Functional analysis of zinc finger protein ZFP157 and AWPM-19-like protein OsPM19L1 from rice(Oryza sativa L. )[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
    [14] HUANG J, WANG M M, JIANG Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance [J]. Gene, 2008, 420(2): 135−144. doi: 10.1016/j.gene.2008.05.019
    [15] KANG M, FOKAR M, ABDELMAGEED H, et al. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity [J]. Plant Molecular Biology, 2011, 75(4/5): 451−466.
    [16] 齐勇, 赵德刚, 吕立堂. 茶树CsANS基因的克隆及在转基因烟草中的功能分析 [J]. 农业生物技术学报, 2019, 27(4):636−644.

    QI Y, ZHAO D G, LV L T. Cloning of CsANS gene from tea plant(Camellia sinensis) and its functional analysis in transgenic tobacco(Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2019, 27(4): 636−644.(in Chinese)
    [17] 胡东杰, 张欣欣. 水稻转录因子OsNAC52、OsMYB340和OsSNAC3基因克隆、表达与定位分析 [J]. 基因组学与应用生物学, 2019, 38(10):4596−4602.

    HU D J, ZHANG X X. Gene cloning, expression and localization analysis of rice transcription factors OsNAC52, OsMYB340 and OsSNAC3 [J]. Genomics and Applied Biology, 2019, 38(10): 4596−4602.(in Chinese)
    [18] 白戈, 杨大海, 姚恒, 等. 烟草NtSAP5基因克隆及干旱胁迫下的功能鉴定 [J]. 中国烟草学报, 2019, 25(2):74−77.

    BAI G, YANG D H, YAO H, et al. Cloning of Tobacco NtSAP5 gene and functional identification under drought stress [J]. Acta Tabacaria Sinica, 2019, 25(2): 74−77.(in Chinese)
    [19] 代婷婷, 姚新转, 吕立堂, 等. 烟草NAC4基因的克隆及其抗旱功能分析 [J]. 农业生物技术学报, 2018, 26(5):764−773.

    DAI T T, YAO X Z, LV L T, et al. Cloning and drought-resistant function analysis of NAC4 gene in tobacco(Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2018, 26(5): 764−773.(in Chinese)
    [20] 徐小艳, 姚新转, 吕立堂, 等. 烟草NtNAC1基因的克隆及其在烟草中的抗旱功能分析 [J]. 植物生理学报, 2018, 54(6):1085−1094.

    XU X Y, YAO X Z, LÜ L T, et al. Cloning of NtNAC1 gene from Nicotiana tabacum and its analysis of drought-resistant function [J]. Plant Physiology Journal, 2018, 54(6): 1085−1094.(in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  53
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-03-11
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回