• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

As6G-FFT基因烟草的阳性鉴定及基因拷贝数测定

铁原毓 文军琴 田洁

铁原毓,文军琴,田洁. 转As6G-FFT基因烟草的阳性鉴定及基因拷贝数测定 [J]. 福建农业学报,2022,37(5):592−599 doi: 10.19303/j.issn.1008-0384.2022.005.006
引用本文: 铁原毓,文军琴,田洁. 转As6G-FFT基因烟草的阳性鉴定及基因拷贝数测定 [J]. 福建农业学报,2022,37(5):592−599 doi: 10.19303/j.issn.1008-0384.2022.005.006
TIE Y Y, WEN J Q, TIAN J. Identification and Copy Number of As6G-FFT in Transgenic Tobacco Plant [J]. Fujian Journal of Agricultural Sciences,2022,37(5):592−599 doi: 10.19303/j.issn.1008-0384.2022.005.006
Citation: TIE Y Y, WEN J Q, TIAN J. Identification and Copy Number of As6G-FFT in Transgenic Tobacco Plant [J]. Fujian Journal of Agricultural Sciences,2022,37(5):592−599 doi: 10.19303/j.issn.1008-0384.2022.005.006

As6G-FFT基因烟草的阳性鉴定及基因拷贝数测定

doi: 10.19303/j.issn.1008-0384.2022.005.006
基金项目: 国家自然科学基金项目(31960590);青海省科技厅重点实验室项目(2020-ZJ-Y02);中国科学院“西部之光”项目(2019年)
详细信息
    作者简介:

    铁原毓(1997-),女,硕士研究生,研究方向:蔬菜分子生物学(E-mail:healer2727@163.com

    通讯作者:

    田洁(1986-),女,博士,副研究员,研究方向:蔬菜生理与分子生物技术(E-mail:tiantian8092001@163.com

  • 中图分类号: S 572

Identification and Copy Number of As6G-FFT in Transgenic Tobacco Plant

  • 摘要:   目的  为验证转As6G-FFT烟草的基因功能,筛选稳定遗传的阳性株系材料,以建立基于SYBR Green的实时荧光定量PCR的转基因拷贝数检测方法。  方法  利用PCR检测、实时荧光定量PCR(Real-time quantitative PCR,qRT-PCR)技术及生理指标分析鉴定转As6G-FFT基因阳性烟草植株,并利用基于SYBR Green的实时荧光定量PCR鉴定阳性转基因烟草中As6G-FFT基因的拷贝数。  结果  (1)基于PCR检测,14个转基因烟草叶片均能扩增出目的片段,表明14个株系中均已成功转入目的基因As6G-FFT;(2)14个转基因株系中As6G-FFT基因表达量呈极显著(P<0.01)或极其显著上升(P <0.001),其中6个株系的表达量呈极其显著升高(P <0.001);且其表达量与野生型相比最高提高215.13倍;(3)基于生理指标,测定转As6G-FFT基因烟草的果聚糖含量,发现14个转基因株系中果聚糖含量呈极显著(P <0.01)或极其显著上升(P <0.001),其中13个株系的果聚糖含量极其显著升高(P <0.001);且其果聚糖含量与野生型相比最高提高10.47倍;(4)基于SYBR Green实时荧光定量PCR构建As6G-FFTNtACT基因的标准曲线,分别为y=−0.290 7x+3.014 5和y=−0.2813x+8.0141,R2均为1;在检测的14个转基因株系中As6G-FFT基因拷贝数为1~3,其中1、2和3拷贝的单株数分别占总数的35.7%、50.0%和14.3%。  结论  本研究从DNA、RNA和生理水平综合进行阳性转基因烟草的鉴定,鉴定结果更为准确。此外,还建立了基于SYBR Green实时荧光定量PCR的转基因烟草中外源As6G-FFT基因拷贝数检测方法,可用于快速、高效地估算转基因烟草中外源基因拷贝数,为后续获得稳定遗传材料提供筛选依据。
  • 图  1  As6G-FFT基因烟草PCR检测

    M:DNA分子量标准(2 000 bp);WT:野生型烟草;N1~N14:转基因烟草株系。下同。

    Figure  1.  PCR detection of As6G-FFT in transgenic tobacco plants

    M: DNA marker (2 000 bp); WT: wild-type tobacco; N1-N14: transgenic tobacco lines. Same for the following.

    图  2  As6G-FFT基因烟草的基因表达量

    **:差异极显著(P<0.01);***:差异极其显著(P<0.001)。图3同。

    Figure  2.  As6G-FFT expressions in transgenic and wild-type tobacco plants

    **: extremely significant difference (P<0.01), ***: extremely significant difference (P<0.001) ; The same as Fig.3.

    图  3  As6G-FFT基因烟草的果聚糖含量

    Figure  3.  Fructan contents in transgenic and wild-type tobacco plants

    图  4  As6G-FFTNtACT基因实时荧光定量PCR的标准曲线

    A:As6G-FFT基因;B:NtACT基因。图5、6同。

    Figure  4.  Real-time fluorescent quantitative PCR standard curves of As6G-FFT and NtACT

    A: As6G-FFT; B: NtACT. Same for Fig. 5, 6.

    图  5  As6G-FFTNtACT基因实时荧光定量PCR的熔解曲线

    Figure  5.  Real-time fluorescent quantitative PCR melting curves of As6G-FFT and NtACT

    图  6  As6G-FFTNtACT基因实时荧光定量PCR的扩增曲线

    Figure  6.  Real-time fluorescent quantitative PCR amplification curves of As6G-FFT and NtACTs

    表  1  引物序列

    Table  1.   Primer sequence

    引物
    Primer
    引物序列
    (5′-3′) Primer sequence
    目的
    Purpose
    As6G-FFT-clone F: ATGGATGCTCAAGACATTGAG
    TC
    阳性PCR检测
    Positive PCR detection
    R: TTAAAAATGATAAAAATCATTG
    TAAGTGGAGTTC
    As6G-FFT F: TGGCTCTTTACGCACTCA 实时荧光定量
    PCR分析
    qRT-PCR analysis
    R: TCGCACTCGTCCTACCTC
    NtACT F: AATGATCGGAATGGAAGCTG
    R: TGGTACCACCACTGAGGACA
    下载: 导出CSV

    表  2  转基因烟草中As6G-FFT基因拷贝数

    Table  2.   Copy number of As6G-FFT in transgenic tobacco plants

    转基因烟草
    Transgenic tobacco
    As6G-FFT基因
    As6G-FFT gene
    NtACT基因
    NtACT gene
    浓度对数值的比值
    Log value ratio of concentration
    拷贝数
    Copy number
    Ct熔解温度
    Tm
    浓度对数值
    Log value of concentration
    Ct熔解温度
    Tm
    浓度对数值
    Log value of concentration
    N1 19.14 83.81 2.55 20.60 80.13 2.22 1.15 1
    N2 20.44 83.67 2.93 23.40 80.12 1.43 2.04 2
    N3 20.81 83.70 3.03 20.78 80.10 2.17 1.40 1
    N4 21.08 83.79 3.11 20.62 80.25 2.21 1.41 1
    N5 21.66 83.73 3.28 23.57 80.23 1.38 2.37 2
    N6 20.62 83.60 2.98 21.76 80.04 1.89 1.57 2
    N7 19.72 83.61 2.72 21.53 80.23 1.96 1.39 1
    N8 18.98 83.78 2.50 21.33 80.38 2.01 1.24 1
    N9 23.51 83.75 3.82 23.82 80.19 1.31 2.91 3
    N10 22.48 83.66 3.52 22.39 80.08 1.71 2.05 2
    N11 22.46 83.79 3.51 21.78 80.21 1.89 1.86 2
    N12 21.80 83.84 3.32 22.60 80.29 1.66 2.01 2
    N13 22.76 83.69 3.60 22.75 80.12 1.61 2.23 2
    N14 22.72 83.66 3.59 23.42 80.03 1.43 2.52 3
    下载: 导出CSV
  • [1] 陈真真, 周国勤, 陈新宏, 等. 转华山新麦草果聚糖合成酶基因对烟草相关生理指标的影响 [J]. 湖北农业科学, 2020, 59(9):95−98.

    CHEN Z Z, ZHOU G Q, CHEN X H, et al. Effects of transfer of fructan synthase gene of Psathyrostachys huashanensis on physiological indexes of tobacco [J]. Hubei Agricultural Sciences, 2020, 59(9): 95−98.(in Chinese)
    [2] 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展 [J]. 植物学报, 2014, 49(2):209−220. doi: 10.3724/SP.J.1259.2014.00209

    XU H H, KANG J, LIANG M X. Research advances in the metabolism of fructan in plant stress resistance [J]. Chinese Bulletin of Botany, 2014, 49(2): 209−220.(in Chinese) doi: 10.3724/SP.J.1259.2014.00209
    [3] FILIPENKO E A, FILIPENKO M L, DEINEKO E V, et al. Analysis of integration sites of T-DNA insertions in transgenic tobacco plants [J]. Cytology and Genetics, 2007, 41(4): 199−203. doi: 10.3103/S0095452707040019
    [4] GORDANA M, MANSOUR K, MIRANDE N, et al. Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types [J]. The New Phytologist, 2009, 184(4): 851−864. doi: 10.1111/j.1469-8137.2009.03011.x
    [5] LASSEUR B, LOTHIER J, DJOUMAD A, et al. Molecular and functional characterization of a cDNA encoding fructan: Fructan 6G-fructosyltransferase (6G-FFT)/fructan: Fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L. ) [J]. Journal of Experimental Botany, 2006, 57(11): 2719−2734. doi: 10.1093/jxb/erl034
    [6] GITTE G, THOMAS D, MARIANNE F, et al. Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT [J]. Journal of Plant Physiology, 2008, 165(11): 1214−1225. doi: 10.1016/j.jplph.2007.06.019
    [7] 何娜, 张园, 林春, 等. 芦笋果聚糖: 果聚糖6-果糖基转移酶基因Ao6G-FFT序列特征及表达模式研究 [J]. 植物生理学报, 2021, 57(4):929−938.

    HE N, ZHANG Y, LIN C, et al. Sequence characteristics and expression pattern of fructose 6G-fructose transferase gene Ao6G-FFT in Asparagus officinalis [J]. Plant Physiology Journal, 2021, 57(4): 929−938.(in Chinese)
    [8] 罗滨, 陈永康, 王莹. 植物外源基因拷贝数及插入位点的检测方法与技术 [J]. 河南师范大学学报(自然科学版), 2012, 40(6):111−116.

    LUO B, CHEN Y K, WANG Y. Methods and techniques for estimating the copy number and flanking sequences of exogenous gene in transgenic plants [J]. Journal of Henan Normal University(Natural Science Edition), 2012, 40(6): 111−116.(in Chinese)
    [9] 王育花, 赵森, 陈芬, 等. 利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究 [J]. 生命科学研究, 2007, 11(4):301−305. doi: 10.3969/j.issn.1007-7847.2007.04.004

    WANG Y H, ZHAO S, CHEN F, et al. Estimation of the copy number of exogenous gene in transgenic rice by real-time fluorescence quantitative PCR [J]. Life Science Research, 2007, 11(4): 301−305.(in Chinese) doi: 10.3969/j.issn.1007-7847.2007.04.004
    [10] 裘劼人, 许颖, 喻富根. 利用SYBR Green实时定量PCR法检测转基因植物外源基因的拷贝数 [J]. 安徽农业科学, 2011, 39(21):12655−12657. doi: 10.3969/j.issn.0517-6611.2011.21.010

    QIU J R, XU Y, YU F G. Estimating the copy number of transgenes in transformed Arabidopsis by SYBR green real-time quantitative PCR [J]. Journal of Anhui Agricultural Sciences, 2011, 39(21): 12655−12657.(in Chinese) doi: 10.3969/j.issn.0517-6611.2011.21.010
    [11] 苏慧慧, 李涛, 谢雯琦, 等. 基于实时荧光定量PCR对转基因樱桃番茄外源基因拷贝数的检测 [J]. 分子植物育种, 2015, 13(2):345−354.

    SU H H, LI T, XIE W Q, et al. Detecting exogenous gene copy numbers of exogenous gene in transgenic tomato based on fluorescent quantitative real-time PCR [J]. Molecular Plant Breeding, 2015, 13(2): 345−354.(in Chinese)
    [12] 田洁, 钟启文, 田萌, 等. 一种强酸水解-HPLC法检测大蒜果聚糖含量的方法: CN107941952A[P]. 2018-04-20.
    [13] 高洁铭. 菊芋块茎表皮花青素生物合成分子机理研究[D]. 西宁: 青海大学, 2020.

    GAO J M. Molecular mechanism of anthocyanin biosynthesis in tuber epidermis of Jerusalem artichoke[D]. Xining: Qinghai University, 2020. (in Chinese)
    [14] 王盛, 谢芝勋, 谢丽基, 等. 转基因烟草中外源基因实时荧光定量PCR检测方法的建立 [J]. 南方农业学报, 2015, 46(5):745−749. doi: 10.3969/j:issn.2095-1191.2015.5.745

    WANG S, XIE Z X, XIE L J, et al. Detection method of exogenous gene in transgenic tobacco by real-time fluorescence quantitative PCR [J]. Journal of Southern Agriculture, 2015, 46(5): 745−749.(in Chinese) doi: 10.3969/j:issn.2095-1191.2015.5.745
    [15] 许兰珍, 何永睿, 雷天刚, 等. 转基因柑橘外源基因拷贝数的实时荧光定量PCR检测 [J]. 园艺学报, 2016, 43(6):1186−1194.

    XU L Z, HE Y R, LEI T G, et al. Identification of the copy number of exogenous gene in transgenic Citrus by quantitative real-time PCR [J]. Acta Horticulturae Sinica, 2016, 43(6): 1186−1194.(in Chinese)
    [16] 余婧, 邹颉, 付强, 等. 多重实时荧光定量PCR分析转基因烟草外源基因拷贝数 [J]. 中国烟草学报, 2017, 23(4):92−97.

    YU J, ZOU J, FU Q, et al. Detecting copy number of exogenous genes in transgenic tobacco by multiplex RT-PCR [J]. Acta Tabacaria Sinica, 2017, 23(4): 92−97.(in Chinese)
    [17] 余桂容, 张维, 杜文平, 等. 抗草甘膦转基因玉米外源基因ddPCR拷贝数分析 [J]. 西南农业学报, 2017, 30(8):1707−1712.

    YU G R, ZHANG W, DU W P, et al. Estimation of exogenous genes copy number of genetically modified glyphosate-resistant maize by droplet digital PCR [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(8): 1707−1712.(in Chinese)
    [18] 王永, 兰青阔, 赵新, 等. 数字PCR在转基因水稻拷贝数鉴定中的应用 [J]. 生物技术通报, 2018, 34(3):53−58.

    WANG Y, LAN Q K, ZHAO X, et al. Estimation of the copy number of exogenous genes in genetically modified rice by droplet digital PCR [J]. Biotechnology Bulletin, 2018, 34(3): 53−58.(in Chinese)
    [19] 冀志庚, 高学军, 敖金霞, 等. SYBR Green实时定量PCR检测转基因大豆中外源基因拷贝数 [J]. 东北农业大学学报, 2011, 42(10):11−15.

    JI Z G, GAO X J, AO J X, et al. Establishment of SYBR Green-base quantitative real-time PCR assay for determining transgene copy number in transgenic soybean [J]. Journal of Northeast Agricultural University, 2011, 42(10): 11−15.(in Chinese)
    [20] 庄强, 钱程, 刘立. SYBR Green实时定量PCR检测外源基因拷贝数 [J]. 浙江理工大学学报, 2010, 27(1):125−129.

    ZHUANG Q, QIAN C, LIU L. Establishment of SYBR green-base quantitative real-time PCR assay for determining transgene copy number in genome [J]. Journal of Zhejiang Sci-Tech University, 2010, 27(1): 125−129.(in Chinese)
    [21] TAN B, LI D L, XU S X, et al. Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliata[L. ]Raf), a potential model genotype for functional genomics studies in Citrus [J]. Tree Genetics & Genomes, 2009, 5(3): 529−537.
    [22] WEN L, TAN B, GUO W W. Estimating transgene copy number in precocious trifoliate orange by TaqMan real-time PCR [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 109(2): 363−371. doi: 10.1007/s11240-011-0101-x
    [23] 魏毅东, 罗曦, 吴方喜, 等. 利用qPCR法检测OsPIMT1转基因水稻中的外源片段拷贝数 [J]. 福建稻麦科技, 2017, 35(4):39−42. doi: 10.3969/j.issn.1008-9799.2017.04.013

    WEI Y D, LUO X, WU F X, et al. Determination of the copy number of exogenous fragment in Os PIMT1 transgenic rice by quantitative real-time PCR [J]. Fujian Science and Technology of Rice and Wheat, 2017, 35(4): 39−42.(in Chinese) doi: 10.3969/j.issn.1008-9799.2017.04.013
    [24] 杜京尧, 尚飞, 王高华, 等. OsRhoGDI2过表达转基因水稻的筛选鉴定及外源基因拷贝数的初步分析 [J]. 江苏农业科学, 2019, 47(14):50−54.

    DU J Y, SHANG F, WANG G H, et al. Screening and identification ofOsRhoGDI2 overexpression transgenic rice and preliminary analysis of foreign gene copy number [J]. Jiangsu Agricultural Sciences, 2019, 47(14): 50−54.(in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  138
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 录用日期:  2022-01-12
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-05-28

目录

    /

    返回文章
    返回