• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机图像的水稻地上部生物量估算

舒时富 李艳大 曹中盛 孙滨峰 叶春 吴罗发 朱艳 丁艳锋 何勇

舒时富,李艳大,曹中盛,等. 基于无人机图像的水稻地上部生物量估算 [J]. 福建农业学报,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002
引用本文: 舒时富,李艳大,曹中盛,等. 基于无人机图像的水稻地上部生物量估算 [J]. 福建农业学报,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002
SHU S F, LI Y D, CAO Z S, et al. Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging [J]. Fujian Journal of Agricultural Sciences,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002
Citation: SHU S F, LI Y D, CAO Z S, et al. Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging [J]. Fujian Journal of Agricultural Sciences,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002

基于无人机图像的水稻地上部生物量估算

doi: 10.19303/j.issn.1008-0384.2022.007.002
基金项目: 江西省重点研发计划项目(20192BBF60052、20212BBF61013、20212BBF63040、20202BBFL63046、20202BBFL63044);国家自然科学基金项目(31460320);国家“万人计划”青年拔尖人才项目(2020-2023);江西省“双千计划”项目(2020-2022)
详细信息
    作者简介:

    舒时富(1986−),男,硕士,副研究员,研究方向:作物精确管理和农业机械化(E-mail:shusf@foxmail.com

    通讯作者:

    李艳大(1980−),男,博士,研究员,研究方向:信息农学与农机化技术(E-mail:liyanda2008@126.com

  • 中图分类号: S 511

Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging

  • 摘要:   目的  为探究无人机图像估算水稻地上部生物量(Aboveground biomass,AGB)的可行性,明确各图像特征与水稻AGB的定量关系,构建基于图像特征的水稻AGB估算模型。  方法  通过实施2个品种和4个施氮水平的小区试验,于分蘖期、孕穗期和齐穗期测定水稻AGB,同步采用无人机搭载数码相机获取水稻图像并提取颜色指数和纹理特征,分析其在不同生育期与水稻AGB之间的相关性,构建定量估算模型,并对模型进行检验。  结果  颜色指数中红蓝差值(r-b)与水稻AGB之间的相关性最好,纹理特征参数(G-mean)与水稻AGB之间的相关性最高;基于红蓝差值(r-b)和G-mean构建的水稻AGB双指数模型优于单一指数模型,全生育期估算模型y=2544.507+5054.243x1−145.543x2−556.553x1x2+27379.41x12+3.927x22,建模决定系数(R2)为0.9202,模型检验的决定系数(R2)为0.9112。  结论  基于颜色指数(r-b)和纹理特征参数(G-mean)融合构建的AGB估算模型可准确的估算水稻AGB,在水稻长势快速无损监测和精确管理中具有应用价值。
  • 图  1  小区试验布置

    Figure  1.  Arrangement for plot experiment

    图  2  不同施氮水平下水稻地上部生物量的动态变化

    Figure  2.  Dynamic changes on AGB of rice plants grown with varied nitrogen fertilizations

    图  3  水稻孕穗期无人机RGB图像

    Figure  3.  UAV RGB images of rice plants at booting stage

    图  4  基于Co-occurrence measures处理的水稻孕穗期图像

    Figure  4.  Co-occurrence measures-based UAV image of rice plants at booting stage

    表  1  地上部生物量与颜色指数之间的相关性

    Table  1.   Correlation between AGB and color indices

    序号
    Number
    颜色指数
    Color index
    相关系数r
    Correlation coefficient
    分蘖期
    Tillering
    孕穗期
    Booting
    齐穗期
    Heading
    全生育期
    Whole growth period
    1r-b−0.899**−0.914**−0.887**−0.890**
    2VARI0.809**0.844**0.833**0.841**
    3G−0.818**−0.834**−0.843**−0.841**
    4NRI−0.821**−0.833**−0.822**−0.823**
    5r/b−0.817**−0.825**−0.821**−0.822**
    6R−0.802**−0.821**−0.812**−0.811**
    7WI0.792**0.803**0.793**0.795**
    8NBI0.764*0.798**0.792**0.793**
    9MGRVI0.748*0.778*0.772*0.769*
    10GRVI0.750*0.757*0.764*0.766*
    11ExR−0.738*−0.745*−0.741*−0.746*
    12g/b−0.63*−0.73*−0.731*−0.728*
    13ExGR0.5320.614*0.609*0.611*
    14B−0.569−0.583−0.578−0.572
    15g-b−0.478−0.532−0.523−0.516
    16ExG0.2450.3210.3280.331
    17NGI0.2450.3120.3210.315
    18r+b−0.245−0.311−0.301−0.312
    19RGBVI0.0420.0520.0490.051
    *代表P=0.05显著水平,**代表P=0.01极显著水平。表5同。
    Significance level: * represents P=0.05. Extremely significant level:** represents P=0.01.The same as Table 5.
    下载: 导出CSV

    表  2  基于红蓝差值(r-b)的AGB估算模型构建和验证

    Table  2.   Construction and validation of AGB estimation model based on (r-b)

    生育期
    Growth stage
    建模
    Calibration
    检验
    Validation
    类型 Type估算模型 Estimation model
    决定系数R 2
    Coefficient of determination R2
    RMSE/
    (g·m−2)
    RRMSE/
    %
    R2
    分蘖期
    Tillering
    二次多项式 Quadraticy = 2690.9x2 − 2806.5x + 942.590.877822.076.090.8682
    指数 Exponentialy = 972.12e−3.47x0.8774 24.156.640.8639
    对数 Logarithmic y = −355.2ln(x) − 83.6380.877222.946.280.8568
    乘幂 Powery = 100.57x−1.0110.874824.836.780.8487
    线性 Linear y = −1213.7x + 711.680.871924.256.650.8543
    孕穗期
    Booting
    二次多项式 Quadraticy = −1491.4x2 − 836.69x + 892.930.882020.225.580.8713
    线性 Lineary = −1431.4x + 948.530.880120.545.660.8654
    指数 Exponentialy = 1017.8e−2.182x0.874121.956.090.8501
    对数 Logarithmicy = −268.9ln(x) + 220.540.857427.767.580.8435
    乘幂 Powery = 336.6x−0.4080.840929.738.090.8212
    齐穗期
    Heading
    二次多项式 Quadraticy = 3480.4x2 − 2549.8x + 1311.20.872823.996.620.8643
    指数 Exponentialy = 1292.7e−1.637x0.869425.677.080.8566
    线性 Lineary = −1778.5x + 1281.70.863026.467.250.8521
    对数 Logarithmicy = −135ln(x) + 754.890.815927.97.680.8072
    乘幂 Powery = 799.19x−0.1230.795633.179.040.7013
    全生育期
    Whole growth period
    二次多项式 Quadraticy = 705.61x2 − 3450.2x + 1364.80.869324.656.740.8614
    指数 Exponentialy = 1688.3e−4.88x0.823729.918.150.8122
    线性 Lineary = −3177.4x + 1344.40.868926.597.300.8461
    对数 Logarithmicy = −381.9ln(x) + 25.3990.725135.069.620.6531
    乘幂 Powery = 238.62x−0.5470.526351.2514.090.4101
    下载: 导出CSV

    表  3  地上部生物量与纹理特征参数之间的相关性

    Table  3.   Correlations between AGB and texture features

    序号
    Number
    纹理特征参数
    Texture feature
    相关系数 r
    correlation coefficient r
    分蘖期
    Tillering
    孕穗期
    Booting
    齐穗期
    Heading
    全生育期
    Whole growth period
    1 G-均值 −0.907** −0.932** −0.917** −0.901**
    G-mean
    2 R-均值 −0.887** −0.891** −0.890** −0.889**
    R-mean
    3 R-二阶矩 0.583* 0.782* 0.727* 0.801**
    R-second moment
    4 B-均值 −0.768* −0.749* −0.762* −0.787*
    B-mean
    5 R-方差 0.652* 0.742* 0.772* 0.713*
    R-variance
    6 B-二阶矩 0.543 0.652* 0.544 0.522
    B-second moment
    7 G-方差 0.568 0.563 0.612* 0.555
    G-variance
    8 B-方差 0.464 0.494 0.432 0.564
    B-variance
    9 G-对比度 0.333 0.452 0.411 0.562
    G-contrast
    10 R-相异性 0.488 0.521 0.517 0.553
    R-dissimilarity
    11 B-信息熵 −0.327 −0.431 −0.417 −0.476
    B-entropy
    12 G-协同性 −0.415 −0.463 −0.434 −0.408
    G-homogeneity
    13 R-信息熵 −0.457 −0.325 −0.402 −0.376
    R-entropy
    14 G-相异性 0.404 0.441 0.454 0.412
    G-dissimilarity
    15 B-协同性 0.212 0.221 0.322 0.435
    B-homogeneity
    16 B-对比度 0.126 0.321 0.311 0.411
    B-contrast
    17 G-信息熵 −0.371 −0.362 −0.322 −0.377
    G-entropy
    18 R-协同性 0.195 0.211 0.322 0.164
    R-homogeneity
    19 B-相关性 −0.204 −0.264 −0.228 −0.224
    B-correlation
    20 G-二阶矩 0.04 0.211 0.142 0.226
    G-second moment
    21 R-相关性 −0.107 −0.124 −0.214 −0.135
    R-correlation
    22 R-对比度 0.118 0.123 0.135 0.074
    R-contrast
    23 B-相异性 0.093 0.132 0.127 0.211
    B-dissimilarity
    24 G-相关性 −0.006 −0.013 −0.021 −0.089
    G-correlation
    下载: 导出CSV

    表  4  基于纹理特征参数(G-mean)的水稻各生育期AGB模型的构建和检验

    Table  4.   Construction and validation of AGB estimation model for each growth stage of rice plants based on texture G-mean

    生育期
    Growth stage
    建模 Calibration检验 Validation
    类型
    Type
    估算模型
    Estimation model
    决定系数R 2
    Coefficient of
    determination R2
    均方根误差
    RMSE/
    (g·m−2)
    相对均方根误差
    RRMSE/
    %
    决定系数
    R2
    分蘖期
    Tillering
    二次多项式 Quadratic y = 0.0736x2 − 14.46x + 780.83 0.8875 22.06 6.08 0.8797
    对数 Logarithmic y = −327ln(x) + 1525.7 0.8873 21.67 6.01 0.8635
    指数 Exponential y = 902.39e−0.026x 0.8871 23.89 6.56 0.8717
    线性 Linear y = −9.0632x + 684.31 0.8859 23.65 6.48 0.8790
    乘幂 Power y = 9934.4x−0.934 0.8742 24.45 6.70 0.8311
    孕穗期
    Booting
    二次多项式 Quadratic y = 0.1879x2 − 25.845x + 1201.6 0.9128 17.14 4.75 0.9034
    指数 Exponential y = 1237.7e−0.024x 0.9126 16.63 4.63 0.9017
    对数 Logarithmic y = −411.4ln(x) + 1994.6 0.9118 15.70 4.38 0.9004
    线性 Linear y = −15.965x + 1075.6 0.9106 17.97 4.98 0.9094
    乘幂 Power y = 5007.2x−0.627 0.9071 19.69 5.42 0.8903
    齐穗期
    Heading
    二次多项式 Quadratic y = 2.2052x2 − 114.72x + 2398.5 0.9014 17.26 4.81 0.8945
    乘幂 Power y = 5702.9x−0.584 0.9001 17.52 4.95 0.8809
    对数 Logarithmic y = −634.1ln(x) + 2892.2 0.8948 17.66 4.91 0.8843
    指数 Exponential y = 1930.3e−0.033x 0.8888 20.01 5.57 0.8671
    线性 Linear y = −35.866x + 1714.6 0.8778 22.64 6.22 0.8121
    全生育期
    Whole growth period
    二次多项式 Quadratic y = 0.9499x2 − 86.442x + 2254 0.9005 11.10 3.11 0.8993
    乘幂 Power y = 45897x−1.33 0.8925 16.09 4.53 0.8713
    对数 Logarithmic y = −865.4ln(x) + 3492.7 0.8913 13.95 3.89 0.8671
    指数 Exponential y = 2447.4e−0.051x 0.8883 11.69 3.29 0.9098
    线性 Linear y = −32.075x + 1557.3 0.8692 26.59 7.31 0.8463
    下载: 导出CSV

    表  5  基于r-b和G-mean的AGB双指数线性回归模型的构建和检验

    Table  5.   Construction and validation of AGB estimation model based on r-b and G-mean

    生育期
    Growth stage
    建模 Calibration检验 Validation
    估算模型
    Model
    决定系数R 2
    Coefficient of
    determination R2
    均方根误差
    RMSE/
    (g·m−2)
    相对均方根误差
    RRMSE/
    %
    决定
    系数
    R2
    分蘖期 Tillering y=879.0997−3088.61x1+5.9053x2+364.8907x1x2−18580.4 x12−1.607 x22 0.9099 16.46 4.68 0.8903
    孕穗期 Booting y=1218.506−1364.43x1−16.1009x2+380.0562x1x2−21120.2947x12−1.4778 x22 0.9155 22.01 3.32 0.9006
    齐穗期 Heading y=2422.079+3430.592x1−143.099 x2−381.908x1x2+13707.691x12+4.369x22 0.9043 36.46 3.37 0.8901
    全生育期
    Whole growth period
    y=2544.507+5054.243x1−145.543x2−556.553x1x2+27379.41x12+3.927x22 0.9202 76.20 10.91 0.9112
    下载: 导出CSV
  • [1] ZHU W, SUN Z, PENG J, et al. Estimating maize above-ground biomass using 3d point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales [J]. Remote Sens, 2019, 11: 2678. doi: 10.3390/rs11222678
    [2] 田婷, 张青, 张海东, 等. 基于无人机遥感的水稻产量估测 [J]. 中国稻米, 2022, 28(1):67−71, 77.

    TIAN T, ZHANG Q, ZHANG H D. Estimating yield of rice based on remote sensing by unmanned aerial vehicle [J]. China Rice, 2022, 28(1): 67−71, 77.(in Chinese)
    [3] 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究 [J]. 西北林学院学报, 2022, 37(2):186−192. doi: 10.3969/j.issn.1001-7461.2022.02.26

    ZHOU R, ZHAO T Z, WU F Y. Aboveground biomass model based on Landsat 8 remote sensing images [J]. Journal of Northwest Forestry University, 2022, 37(2): 186−192.(in Chinese) doi: 10.3969/j.issn.1001-7461.2022.02.26
    [4] 姜妍, 王琳, 杨月, 等. 无人机高光谱成像技术在作物生长信息监测中的应用 [J]. 东北农业大学学报, 2022, 53(3):88−96.

    JIANG Y, WANG L, YANG Y, et al. Application of UAV hyperspectral imaging technology in crop growth information monitoring [J]. Journal of Northeast Agricultural University, 2022, 53(3): 88−96.(in Chinese)
    [5] 杨福芹, 李天驰, 冯海宽, 等. 基于无人机数码影像的冬小麦氮素营养诊断研究 [J]. 福建农业学报, 2021, 36(3):369−378.

    YANG F Q, LI T C, FENG H K, et al. UAV digital image-assisted monitoring on nitrogen nutrition of winter wheat in the field [J]. Fujian Journalof Agricultural Sciences, 2021, 36(3): 369−378.(in Chinese)
    [6] 梁胤豪, 陈全, 董彩霞, 等. 基于深度学习和无人机遥感技术的玉米雄穗检测研究 [J]. 福建农业学报, 2020, 35(4):456−464.

    LIANG Y H, CHEN Q, DONG C X, et al. Application of deep-learning and UAV for field surveying corn tassel [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 456−464.(in Chinese)
    [7] YANG G J, LIU J G, ZHAO C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives [J]. Frontiers in Plant Science, 2017, 8: 1111. doi: 10.3389/fpls.2017.01111
    [8] CASANOVA D, EPEMA G F, GOUDRIAAN J. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crops Research, 1998, 55(1/2): 83−92.
    [9] TAKAHASHI W, NGUYEN-CONG V, KAWAGUCHI S, et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies [J]. Plant Production Science, 2000, 3(4): 377−386. doi: 10.1626/pps.3.377
    [10] GNYP M L, MIAO Y X, YUAN F, et al. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages [J]. Field Crops Research, 2014, 155: 42−55. doi: 10.1016/j.fcr.2013.09.023
    [11] 王秀珍, 黄敬峰, 李云梅, 等. 水稻地上鲜生物量的高光谱遥感估算模型研究 [J]. 作物学报, 2003, 29(6):815−821. doi: 10.3321/j.issn:0496-3490.2003.06.004

    WANG X Z, HUANG J F, LI Y M, et al. Study on hyperspectral remote sensing estimation models for the ground fresh biomass of rice [J]. Acta Agronomica Sinica, 2003, 29(6): 815−821.(in Chinese) doi: 10.3321/j.issn:0496-3490.2003.06.004
    [12] DAI M, YANG T L, YAO Z S, et al. Wheat biomass estimation in different growth stages based on color and texture features of UAV images [J/OL]. Smart Agriculture, Published online: 2022-02-22 14: 21: 52. URL: https://kns.cnki.net/kcms/detail/10.1681.S.20220221.1425.002.html.
    [13] 杨俊, 丁峰, 陈晨, 等. 小麦生物量及产量与无人机图像特征参数的相关性 [J]. 农业工程学报, 2019, 35(23):104−110. doi: 10.11975/j.issn.1002-6819.2019.23.013

    YANG J, DING F, CHEN C, et al. Correlation of wheat biomass and yield with UAV image characteristic parameters [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 104−110.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.23.013
    [14] 刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测 [J]. 中国农业科学, 2018, 51(16):3060−3073. doi: 10.3864/j.issn.0578-1752.2018.16.003

    LIU C, YANG G J, LI Z H, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion [J]. Scientia Agricultura Sinica, 2018, 51(16): 3060−3073.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.16.003
    [15] 陈晨. 基于无人机图像的小麦生物量与产量的估测研究[D]. 扬州: 扬州大学, 2019

    CHEN C. Estimation of wheat biomass and yield based on UAV images[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
    [16] 张建, 谢田晋, 尉晓楠, 等. 无人机多角度成像方式的饲料油菜生物量估算研究 [J]. 作物学报, 2021, 47(9):1816−1823.

    ZHANG J, XIE T J, WEI X N, et al. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816−1823.(in Chinese)
    [17] 刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究 [J]. 光谱学与光谱分析, 2021, 41(5):1470−1476.

    LIU Y, FENG H K, SUN Q, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions [J]. Spectroscopy And Spectral Analysis, 2021, 41(5): 1470−1476.(in Chinese)
    [18] 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机数码影像的冬小麦株高和生物量估算 [J]. 农业工程学报, 2019, 35(19):107−116. doi: 10.11975/j.issn.1002-6819.2019.19.013

    TAO H L, XU L J, FENG H K, et al. Estimation of plant height and biomass of winter wheat based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 107−116.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.19.013
    [19] 李艳大, 叶春, 曹中盛, 等. 基于作物生长监测诊断仪的双季稻叶片氮含量和氮积累量监测 [J]. 应用生态学报, 2020, 31(9):3040−3050. doi: 10.13287/j.1001-9332.202009.012

    LI Y D, YE C, CAO Z S, et al. Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3040−3050.(in Chinese) doi: 10.13287/j.1001-9332.202009.012
    [20] 叶春, 刘莹, 李艳大, 等. 基于RGB颜色空间的早稻氮素营养监测研究 [J]. 中国农业大学学报, 2020, 25(8):25−34. doi: 10.11841/j.issn.1007-4333.2020.08.03

    YE C, LIU Y, LI Y D, et al. Monitoring the nitrogen nutrition of early rice based on RGB color space [J]. Journal of China Agricultural University, 2020, 25(8): 25−34.(in Chinese) doi: 10.11841/j.issn.1007-4333.2020.08.03
    [21] 石媛媛. 基于数字图像的水稻氮磷钾营养诊断与建模研究[D]. 杭州: 浙江大学, 2011

    SHI Y Y. Rice nutrition diagnosis and modeling based on digital image[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [22] 吴华兵, 朱艳, 田永超, 等. 棉花冠层高光谱参数与叶片氮含量的定量关系 [J]. 植物生态学报, 2007, 31(5):903−909. doi: 10.17521/cjpe.2007.0114

    WU H B, ZHU Y, TIAN Y C, et al. Relationship between canopy hyperspectra parameter and leaf nitrogen concentration in cotton [J]. Journal of Plant Ecology, 2007, 31(5): 903−909.(in Chinese) doi: 10.17521/cjpe.2007.0114
    [23] LEE K J, LEE B W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis [J]. European Journal of Agronomy, 2013, 48: 57−65. doi: 10.1016/j.eja.2013.02.011
    [24] 班松涛. 水稻长势无人机遥感监测研究[D]. 杨凌: 西北农林科技大学, 2020

    BAN S T. Monitoring rice growth conditions using UAV remote sensing system[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  125
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回