• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

家蚕茧层率相关基因筛选及其功能分析

任晓晓 孙运朋 卿卓 杨万军 罗朝斌

任晓晓,孙运朋,卿卓,等. 家蚕茧层率相关基因筛选及其功能分析 [J]. 福建农业学报,2022,37(7):841−849 doi: 10.19303/j.issn.1008-0384.2022.007.004
引用本文: 任晓晓,孙运朋,卿卓,等. 家蚕茧层率相关基因筛选及其功能分析 [J]. 福建农业学报,2022,37(7):841−849 doi: 10.19303/j.issn.1008-0384.2022.007.004
REN X X, SUN Y P, QING Z, et al. Identification and Functional Analysis of Genes Related to Cocoon Shell Ratio in Bombyx mori [J]. Fujian Journal of Agricultural Sciences,2022,37(7):841−849 doi: 10.19303/j.issn.1008-0384.2022.007.004
Citation: REN X X, SUN Y P, QING Z, et al. Identification and Functional Analysis of Genes Related to Cocoon Shell Ratio in Bombyx mori [J]. Fujian Journal of Agricultural Sciences,2022,37(7):841−849 doi: 10.19303/j.issn.1008-0384.2022.007.004

家蚕茧层率相关基因筛选及其功能分析

doi: 10.19303/j.issn.1008-0384.2022.007.004
基金项目: 贵州省科技计划项目(黔科合基础[2020]1Y133、黔科合成果[2019]4214);贵州省农业科学院青年科技基金项目(黔农科院青年科技基金[2020]09)
详细信息
    作者简介:

    任晓晓(1991−),女,硕士,助理研究员,研究方向:家蚕遗传育种(E-mail:1016375902@qq.com

    通讯作者:

    罗朝斌(1964−),男,硕士,研究员,研究方向:家蚕遗传育种(E-mail:1839916377@qq.com

  • 中图分类号: S 881.2

Identification and Functional Analysis of Genes Related to Cocoon Shell Ratio in Bombyx mori

  • 摘要:   目的  挖掘家蚕茧层率相关基因,以期为家蚕茧层率性状分子遗传改良提供参考依据。  方法  以多丝量家蚕品种菁松和中丝量家蚕品种芙蓉为亲本构建BC1代分离群体。在BC1代雄性群体中挑选极端高/低茧层率个体构建子代DNA混池,运用BSA-seq方法对茧层率关联区域进行定位,并运用BLAST软件对关联区域的编码基因进行GO和KEGG等数据库注释及功能预测。  结果  重测序数据与家蚕参考基因组平均比对率为98.86%,平均基因组覆盖度为95.79%(1×)和88.63%(5×);变异检测共获得26 557 646个SNPs;∆(SNP-index)定位到3个与茧层率显著相关的区域,分别为Chr.2:4430~4930 kb、Chr.4:12350~12920 kb和Chr.13:3230~3730 kb,共包含70个编码基因。通过GO与KEGG注释,有58个基因注释到GO数据库,涉及生物过程、分子功能和细胞组分三大类;有19个基因注释到KEGG通路,分布于34个代谢通路中。通过KEGG代谢通路分析,筛选出10个可能对家蚕茧层率有重要调控作用的基因,推测其参与了家蚕丝腺细胞运动、能量代谢和蛋白质合成加工。  结论  运用BSA-seq方法在家蚕第2、4和13号染色体上定位到与茧层率关联的区域,筛选到10个可能与茧层率密切相关的候选基因,为茧层率关键调控基因精细定位及克隆奠定基础。
  • 图  1  分子标记及关联信号在染色体上的分布

    从外到内依次为参考基因组染色体坐标、染色体上基因分布(颜色越深表示基因密度越大)、SNP密度分布(圆点越密集表示SNP密度越大)、InDel密度分布(三角形越密集表示InDel密度越大)、Index值在染色体上的分布。

    Figure  1.  Distribution of SNPs, InDels, and associated signals on chromosome

    Shown from outside inward: chromosome coordinates of reference genome, genes distribution on chromosome (darker color indicates greater gene density), SNP density distribution (density of dots corresponds to that of SNP), InDel density distribution (density of triangles reflects that of InDel), and distribution of indices on chromosome.

    图  2  H池和L池SNP-index、∆(SNP-index)分布情况

    图中不同颜色表示不同的染色体,横坐标为1~28号染色体上每个window的具体物理位置,纵坐标为位置所对应的Index值。

    Figure  2.  SNP-index and ∆(SNP-index) distribution of H-pool and L-pool.

    Different colors represent different chromosomes; x-axis is for physical location of each window on chromosomes 1 to 28; y-axis is for Index corresponding to respective locations.

    图  3  候选基因的GO注释

    Figure  3.  GO annotation of candidate genes

    表  1  测序数据质量

    Table  1.   Statistics on quality of sequencing data

    样品编号
    Sample ID
    原始数据量
    Raw data/bp
    过滤后数据量
    Clean base/bp
    原测序reads 数
    Raw reads
    过滤后reads 数
    Clean reads
    Q20/%Q30/%GC含量
    GC content/%
    菁松(JS)3800021706295123605422516704173817098.1094.0438.83
    芙蓉(FR)58535011085771738817387649083826993497.9193.5638.96
    H-pool160802225401591134015010649154010550009698.1394.1138.89
    L-pool164013180001623207062810861800010762401498.1394.1138.66
    Q20:高质量测序数据中质量值≥20的碱基所占百分比;Q30:高质量测序数据中质量值≥30的碱基所占百分比。
    Q20:The percentage of the bases whose Phred value are more than 20; Q30:The percentage of the bases whose Phred value are more than 30.
    下载: 导出CSV

    表  2  质控数据与参考基因组比对情况

    Table  2.   Matching between quality control data and reference genome

    样品编号
    Sample ID
    比对率
    Mapped ratio/%
    比对到基因组上的reads比例
    Properly ratio/%
    平均测序深度
    Average depth
    基因组覆盖度(1×)
    Genome coverage(1×) /%
    基因组覆盖度(5×)
    Genome coverage(5×) /%
    菁松(JS)98.8482.72 10.3494.7084.71
    芙蓉(FR)98.8882.289.4494.4182.61
    H-pool98.9081.2926.0297.0493.59
    L-pool98.8282.3827.5997.0293.59
    1×覆盖度:1 个碱基覆盖的位点占基因组的百分比;5×覆盖度:5个碱基覆盖的位点占基因组的百分比。
    Coverage 1×: the percentage of at least 1 base-covered site in reference genome; Coverage 5×: the percentage of at least 5 base-covered sites in reference genome.
    下载: 导出CSV

    表  3  关联区域信息统计

    Table  3.   Statistics of the related genes

    染色体编号
    Chromosome ID
    关联区域起点
    Start of associated
    regions/bp
    关联区域终点
    End of associated
    regions/bp
    关联区域长度
    Associated region
    size/Mb
    SNP数量
    SNP number
    关联区域内基因个数
    Gene number in the
    associated regions
    第13染色体 Chr 1332300003730000 0.5011 13
    第4染色体 Chr 412350000129200000.503948
    第2染色体 Chr 2443000049300000.57179
    合计 Total1.576770
    下载: 导出CSV

    表  4  候选基因的KEGG通路分析

    Table  4.   KEGG pathway of genes in candidate regions

    一级代谢
    Primary metabolism
    二级代谢
    Secondary metabolism
    三级代谢
    Tertiary metabolism
    通路编号
    Ko ID
    基因编号
    Gene ID
    新陈代谢
    Metabolism
    聚糖生物合成与代谢
    Glycan biosynthesis and metabolism
    糖胺聚糖降解
    Glycosaminoglycan degradation
    ko00531KWMTBOMO07657
    O-聚糖生物合成
    Other types of O-glycan biosynthesis
    ko00514KWMTBOMO02149
    脂质代谢
    Lipid metabolism
    初级胆汁酸生物合成
    Primary bile acid biosynthesis
    ko00120KWMTBOMO02138
    有机体系统
    Organismal systems
    免疫系统
    Immune system
    RIG-I样受体信号通路
    RIG-I-like receptor signaling pathway
    Ko04622KWMTBOMO02145;
    KWMTBOMO07659;
    KWMTBOMO02143
    Toll样受体信号通路
    Toll-like receptor signaling pathway
    ko04620KWMTBOMO07659
    NOD样受体信号通路
    NOD-like receptor signaling pathway
    ko04621KWMTBOMO07659
    内分泌系统
    Endocrine system
    胰高血糖素信号通路
    Glucagon signaling pathway
    Ko04922KWMTBOMO07653;
    KWMTBOMO07652;
    KWMTBOMO02146
    甲状腺激素信号通路
    Thyroid hormone signaling pathway
    ko04919KWMTBOMO07653;
    KWMTBOMO07652
    胰岛素信号通路
    Insulin signaling pathway
    ko04910KWMTBOMO02146
    神经系统
    Nervous system
    长时程增强效应
    Long-term potentiation
    ko04720KWMTBOMO07653;
    KWMTBOMO07652
    神经营养因子信号通路
    Neurotrophin signaling pathway
    ko04722KWMTBOMO07659
    环境适应
    Environmental adaptation
    生理节律 Circadian rhythmko04710KWMTBOMO00853
    环境信息加工
    Environment information processing
    信号转导
    Signal transduction
    Ras信号通路 Ras signaling pathwayko04014KWMTBOMO02152
    丝裂原活化蛋白激酶信号通路
    MAPK signaling pathway
    Ko04013KWMTBOMO02145;
    KWMTBOMO07659;
    KWMTBOMO02143
    钙离子信号通路
    Calcium signaling pathway
    ko04020KWMTBOMO02146
    低氧诱导因子-1信号通路
    HIF-1 signaling pathway
    ko04066KWMTBOMO07653;
    KWMTBOMO07652
    Wnt信号通路
    Wnt signaling pathway
    ko04310KWMTBOMO07653;
    KWMTBOMO07652;
    KWMTBOMO00853
    环磷酸腺苷信号通路
    cAMP signaling pathway
    ko04024KWMTBOMO07653;
    KWMTBOMO07652
    Notch信号通路 Notch signaling pathwayko04330KWMTBOMO07653;
    KWMTBOMO07652
    Jak-STAT信号通路
    Jak-STAT signaling pathway
    ko04630KWMTBOMO07653;
    KWMTBOMO07652
    TGF-β信号通路
    TGF-beta signaling pathway
    ko04350KWMTBOMO07653;
    KWMTBOMO00853;
    KWMTBOMO07652
    刺猬信号通路
    Hedgehog signaling pathway
    ko04341KWMTBOMO00853
    细胞进程
    Cellular processes
    细胞生长和死亡
    Cell growth and death
    细胞周期 Cell cycleKo04110KWMTBOMO07653;
    KWMTBOMO07652;
    KWMTBOMO00853
    细胞凋亡 Apoptosisko04214KWMTBOMO07659
    卵母细胞减数分裂 Oocyte meiosisko04114KWMTBOMO00853
    细胞通讯 Cell communication黏着连接 Adherens junctionko04520KWMTBOMO07653;
    KWMTBOMO07652
    运输与分解代谢
    Transport and catabolism
    内吞作用 Endocytosisko04144KWMTBOMO07659
    溶酶体 Lysosomeko04142KWMTBOMO07657
    遗传信息加工 Genetic information processing折叠、组装和降解
    Folding, sorting and degradation
    泛素介导的蛋白质水解
    Ubiquitin mediated proteolysis
    ko04120KWMTBOMO07659;
    KWMTBOMO02114;
    KWMTBOMO00853
    蛋白质在内质网上的加工
    Protein processing in endoplasmic reticulum
    ko04141KWMTBOMO02147;
    KWMTBOMO00853
    蛋白酶体 Proteasomeko03050KWMTBOMO02148
    转录 Transcription转录因子 Basal transcription factorsko03022KWMTBOMO02120
    剪接体 Spliceosomeko03040KWMTBOMO02133
    翻译 Translation核糖体 Ribosomeko03010KWMTBOMO02140
    下载: 导出CSV
  • [1] 任晓晓, 罗朝斌, 孙运朋, 等. 高原蚕区家蚕茧层率遗传分析 [J]. 农学学报, 2020, 10(6):75−80.

    REN X X, LUO C B, SUN Y P, et al. The cocoon shell ratio of Bombyx mori from sericultural area of plateau: Genetic analysis [J]. Journal of Agriculture, 2020, 10(6): 75−80.(in Chinese)
    [2] LI C L, TONG X L, ZUO W D, et al. QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing [J]. Scientific Reports, 2017, 7: 17985. doi: 10.1038/s41598-017-18277-y
    [3] 刘娜, 李娟, 秦笙, 等. 家蚕茧丝相关性状的研究进展 [J]. 中国蚕业, 2016, 37(4):6−9. doi: 10.16839/j.cnki.zgcy.2016.04.002

    LIU N, LI J, QIN S, et al. Research progress on cocoon silk related traits of silkworm [J]. China Sericulture, 2016, 37(4): 6−9.(in Chinese) doi: 10.16839/j.cnki.zgcy.2016.04.002
    [4] 栾悦, 李春林, 代方银. 家蚕茧丝性状的遗传基础研究 [J]. 蚕学通讯, 2017, 37(1):21−28. doi: 10.3969/j.issn.1006-0561.2017.01.005

    LUAN Y, LI C L, DAI F Y. Basic researches of the genetics of cocoon traits in silkworm [J]. Newsletter of Sericultural Science, 2017, 37(1): 21−28.(in Chinese) doi: 10.3969/j.issn.1006-0561.2017.01.005
    [5] 鲁成, 李斌, 赵爱春, 等. 家蚕重要经济性状的QTL定位研究 [J]. 中国科学(C辑:生命科学), 2004, 34(3):236−242.

    LU C, LI B, ZHAO A C, et al. QTL mapping of important economic characters of Bombyx mori [J]. Science in China(SerC), 2004, 34(3): 236−242.(in Chinese)
    [6] 李斌, 鲁成, 赵爱春, 等. 家蚕全茧量及重要相关经济性状的多重区间作图分析 [J]. 中国农业科学, 2005, 38(7):1474−1479. doi: 10.3321/j.issn:0578-1752.2005.07.030

    LI B, LU C, ZHAO A C, et al. Multiple interval mapping for whole cocoon weight and related economically important traits QTL in silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2005, 38(7): 1474−1479.(in Chinese) doi: 10.3321/j.issn:0578-1752.2005.07.030
    [7] 司马杨虎, 李斌, 徐海明, 等. 家蚕茧质性状的QTL定位研究 [J]. 遗传学报, 2005, 32(6):625−632.

    SIMA Y H, LI B, XU H M, et al. Study on location of QTLs controlling cocoon traits in silkworm [J]. Acta Genetica Sinica, 2005, 32(6): 625−632.(in Chinese)
    [8] 侯成香, 王修业, 李冰, 等. 家蚕茧丝相关性状的性连锁QTLs定位与分析 [J]. 蚕业科学, 2013, 39(1):35−39. doi: 10.13441/j.cnki.cykx.2013.01.019

    HOU C X, WANG X Y, LI B, et al. Mapping and analysis of Bombyx mori sex-linked QTLs related to cocoon and silk traits [J]. Science of Sericulture, 2013, 39(1): 35−39.(in Chinese) doi: 10.13441/j.cnki.cykx.2013.01.019
    [9] LI B, WANG X Y, HOU C X, et al. Genetic analysis of quantitative trait loci for cocoon and silk production quantity in Bombyx mori (Lepidoptera: Bombycidae) [J]. European Journal of Entomology, 2013, 110(2): 205−213. doi: 10.14411/eje.2013.031
    [10] 张之昊, 王俊, 刘章雄, 等. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因 [J]. 作物学报, 2020, 46(12):1839−1849.

    ZHANG Z H, WANG J, LIU Z X, et al. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean(Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1839−1849.(in Chinese)
    [11] 贾秀苹, 卯旭辉, 岳云, 等. 利用BSA-Seq方法鉴定向日葵耐盐候选基因 [J]. 中国油料作物学报, 2018, 40(6):777−784. doi: 10.7505/j.issn.1007-9084.2018.06.006

    JIA X P, MAO X H, YUE Y, et al. Identification of major salt-tolerant genes via BSA-Seq method in sunflower [J]. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 777−784.(in Chinese) doi: 10.7505/j.issn.1007-9084.2018.06.006
    [12] 徐剑文, 刘剑光, 赵君, 等. 利用BSA-seq发掘棉花适宜机采的果枝长度相关QTL [J]. 棉花学报, 2019, 31(4):319−326. doi: 10.11963/1002-7807.xjwxsh.20190611

    XU J W, LIU J G, ZHAO J, et al. The identification of QTL associated with cotton fruit branch length suitable for mechanized harvest utilizing BSA-seq [J]. Cotton Science, 2019, 31(4): 319−326.(in Chinese) doi: 10.11963/1002-7807.xjwxsh.20190611
    [13] YANG T T, AMANULLAH S, PAN J H, et al. Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping [J]. Euphytica, 2021, 217(2): 19. doi: 10.1007/s10681-020-02758-9
    [14] 刘梦雨, 刘小丰, 江东, 等. 利用重测序-BSA分析鉴定金柑油胞发育相关基因 [J]. 园艺学报, 2019, 46(5):841−854.

    LIU M Y, LIU X F, JIANG D, et al. Identification of genes related to oil gland development in kumquat by using BSA-seq [J]. Acta Horticulturae Sinica, 2019, 46(5): 841−854.(in Chinese)
    [15] 许芸梅, 李玉梅, 贾玉鑫, 等. 马铃薯红色薯肉调控基因的精细定位与候选基因分析 [J]. 中国农业科学, 2019, 52(15):2678−2685. doi: 10.3864/j.issn.0578-1752.2019.15.011

    XU Y M, LI Y M, JIA Y X, et al. Fine mapping and candidate genes analysis for regulatory gene of anthocyanin synthesis in red-colored Tuber flesh [J]. Scientia Agricultura Sinica, 2019, 52(15): 2678−2685.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.15.011
    [16] 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cqDTFC8及其近等基因系构建 [J]. 植物生理学报, 2020, 56(2):219−234. doi: 10.13592/j.cnki.ppj.2019.0398

    LIU H D, ZHAO X T, DU D Z. Mapping of early flowering site cqDTFC8 using QTL-seq technique and construction of its near-isogenic lines in Brassica napus [J]. Plant Physiology Journal, 2020, 56(2): 219−234.(in Chinese) doi: 10.13592/j.cnki.ppj.2019.0398
    [17] 尹明智, 胡燕. 基于BSA-seq法的油菜野芥胞质雄性不育恢复基因的分析 [J]. 西北植物学报, 2020, 40(7):1148−1156.

    YIN M Z, HU Y. Location analysis of restorer gene of Sinapis arvensis cytoplasmic male sterility in Brassica napus based on BSA-seq method [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(7): 1148−1156.(in Chinese)
    [18] 欧点点, 赵光伟, 贺玉花, 等. 甜瓜果皮颜色遗传分析及基因定位 [J]. 中国农学通报, 2019, 35(13):64−69. doi: 10.11924/j.issn.1000-6850.casb18110127

    OU D D, ZHAO G W, HE Y H, et al. Genetic analysis and gene mapping for melon rind color [J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 64−69.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb18110127
    [19] 祝新荣, 何克荣, 柳新菊, 等. 多丝量雄蚕新品种华菁×平72的育成 [J]. 蚕业科学, 2014, 40(2):248−253. doi: 10.13441/j.cnki.cykx.2014.02.012

    ZHU X R, HE K R, LIU X J, et al. Breeding of new male silkworm variety Huajing × Ping 72 with high silk yield [J]. Science of Sericulture, 2014, 40(2): 248−253.(in Chinese) doi: 10.13441/j.cnki.cykx.2014.02.012
    [20] 司马杨虎, 徐海明, 赵爱春, 等. 性别效应对家蚕茧质性状QTL定位的影响 [J]. 蚕业科学, 2009, 35(4):783−789. doi: 10.3969/j.issn.0257-4799.2009.04.012

    SIMA Y H, XU H M, ZHAO A C, et al. Influence of sex-effects on QTL mapping of silkworm cocoon quality traits [J]. Science of Sericulture, 2009, 35(4): 783−789.(in Chinese) doi: 10.3969/j.issn.0257-4799.2009.04.012
    [21] ZHAN S, HUANG J H, GUO Q H, et al. An integrated genetic linkage map for silkworms with three parental combinations and its application to the mapping of single genes and QTL [J]. BMC Genomics, 2009, 10: 389. doi: 10.1186/1471-2164-10-389
    [22] FANG S M, ZHOU Q Z, YU Q Y, et al. Genetic and genomic analysis for cocoon yield traits in silkworm [J]. Scientific Reports, 2020, 10: 5682. doi: 10.1038/s41598-020-62507-9
    [23] 马倩, 马俐, 李胜, 等. 基于RNA-Seq分析Ras1 CA在家蚕后部丝腺过表达对细胞周期通路基因的影响 [J]. 应用昆虫学报, 2015, 52(2):390−399. doi: 10.7679/j.issn.2095-1353.2015.043

    MA Q, MA L, LI S, et al. RNA-Seq technology based transcriptomic analysis of differentially expressed genes in the cell cycle pathway of Ras1 CA-overexpressed and wild type posterior silk glands of Bombyx mori [J]. Chinese Journal of Applied Entomology, 2015, 52(2): 390−399.(in Chinese) doi: 10.7679/j.issn.2095-1353.2015.043
    [24] 张祥乐, 马俐, 马倩, 等. Ras信号通路通过激活转录因子Myc促进核内复制细胞生长 [J]. 昆虫学报, 2018, 61(8):885−894.

    ZHANG X L, MA L, MA Q, et al. Ras signaling pathway promotes the growth of endoreplication cells through activating the expression of transcription factor Myc [J]. Acta Entomologica Sinica, 2018, 61(8): 885−894.(in Chinese)
    [25] CALDWELL P E, WALKIEWICZ M, STERN M. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release [J]. Current Biology, 2005, 15(20): 1785−1795. doi: 10.1016/j.cub.2005.09.011
    [26] MA L, XU H F, ZHU J Q, et al. Ras1 CA overexpression in the posterior silk gland improves silk yield [J]. Cell Research, 2011, 21(6): 934−943. doi: 10.1038/cr.2011.36
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  131
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2021-09-15
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回