• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生防细菌蜡样芽孢杆菌BCCY-22发酵条件优化

赵月 杨亚楠 李雅华 赵洪海 咸洪泉

赵月,杨亚楠,李雅华,等. 生防细菌蜡样芽孢杆菌BCCY-22发酵条件优化 [J]. 福建农业学报,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015
引用本文: 赵月,杨亚楠,李雅华,等. 生防细菌蜡样芽孢杆菌BCCY-22发酵条件优化 [J]. 福建农业学报,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015
ZHAO Y, YANG Y, ZHAO H H, et al. Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22 [J]. Fujian Journal of Agricultural Sciences,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015
Citation: ZHAO Y, YANG Y, ZHAO H H, et al. Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22 [J]. Fujian Journal of Agricultural Sciences,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015

生防细菌蜡样芽孢杆菌BCCY-22发酵条件优化

doi: 10.19303/j.issn.1008-0384.2022.007.015
基金项目: 青岛市科技惠民示范引导专项(21-1-4-ny-5-nsh);山东省重点研发计划项目(2018GNC110024)
详细信息
    作者简介:

    赵月(1997−),女,硕士研究生,主要从事生防菌研究(E-mail:away1247@163.com

    通讯作者:

    咸洪泉(1967−),男,博士,教授,主要从事生防菌研究(E-mail:hqxian0517@163.com

  • 中图分类号: Q 939

Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22

  • 摘要:   目的  蜡样芽孢杆菌BCCY-22是有效防治多种线虫病害的生防细菌。本研究旨在探明生防菌蜡样芽孢杆菌BCCY-22的最优培养条件,为实现该菌株的高效发酵奠定基础。  方法  以蜡样芽孢杆菌BCCY-22的OD600为指标,采用单因素试验和响应面法对该菌株发酵条件进行优化。  结果  高温、低初始pH和供氧不足显著影响蜡样芽孢杆菌BCCY-22的生长,最适发酵条件:发酵温度21.5 ℃、初始pH 7.3、种子液接种量3%、装瓶量23%、发酵时间36 h。  结论  蜡样芽孢杆菌BCCY-22优化发酵条件后,缩短了发酵时间6 h,生物量是优化前的135.94%,研究为蜡样芽孢杆菌BCCY-22生防菌的发酵生产和开发利用提供了依据。
  • 图  1  BCCY-22生长曲线

    Figure  1.  Growth curve of BCCY-22 seeding broth for inoculation

    图  2  菌株BCCY-22在不同培养温度下的生长状况

    同组柱形图上标注的不同小写字母,表示同一时间不同组别间差异显著(P<0.05);下图同。

    Figure  2.  Growth of BCCY-22 under varied temperatures

    Different lowercase letters marked on the columns of the same group showed significant differences among different groups at the same time (P < 0.05); Same for thefollowing.

    图  3  菌株BCCY-22在不同初始pH培养基中生长状况

    Figure  3.  Growth of BCCY-22 in media with varied initial pH

    图  4  菌株BCCY-22在不同接种量下的生长状况

    Figure  4.  Growth of BCCY-22 with varied inoculum concentration

    图  5  菌株BCCY-22在不同装瓶量下的生长状况

    Figure  5.  Growth of BCCY-22 in flask with varied fills

    图  6  pH、温度的交互作用对OD600的响应曲面

    Figure  6.  Response surface diagram on OD600 affected by interaction between initial pH and temperature

    图  7  pH、温度的交互作用对OD600的等值线

    Figure  7.  Contour lines of OD600 affected by interaction between initial pH and temperature

    图  8  温度、装瓶量的交互作用对OD600的响应曲面

    Figure  8.  Response surface diagram on OD600 affected by interaction between temperature and flask- filling

    图  9  装瓶量、温度的交互作用对OD600的等值线

    Figure  9.  Contour lines of OD600 affected by interaction between temperature and flask-filling

    图  10  pH、装瓶量的交互作用对OD600的响应曲面

    Figure  10.  Response surface diagram on OD600 affected by interaction between initial pH and flask-filling

    图  11  OD600和pH、装瓶量的等值线

    Figure  11.  Contour lines of OD600 affected by interaction between initial pH and flask-filling

    图  12  菌株BCCY-22的发酵周期

    Figure  12.  Periods of BCCY-22 fermentation

    表  1  试验因素水平

    Table  1.   Factor level of optimization experimentation

    编号
    Code
    变量
    Variable
    水平 Level
    α+10−1−α
    A温度 Temperature/ ℃33.4130252016.59
    BpH8.867.55.53.52.14
    C装瓶量 Volume/%73.646040206.36
    下载: 导出CSV

    表  2  中心复合设计及试验结果

    Table  2.   Design and results of experiment

    编码类型
    PtType
    区组
    Group
    ABC温度
    Temperature/ ℃
    pH装瓶量
    Volume/%
    OD600
    1111−130.007.5020.000.632
    11−1−1−120.003.5020.000.048
    111−1−130.003.5020.000.050
    −111.6817928310033.415.5040.000.612
    −11−1.6817928310016.595.5040.000.820
    −11001.68179283125.005.5073.640.535
    11−1−1120.003.5060.000.056
    −1100−1.68179283125.005.506.360.915
    0100025.005.5040.000.782
    11−11−120.007.5020.000.854
    1111130.007.5060.000.614
    0100025.005.5040.000.737
    11−11120.007.5060.000.959
    111−1130.003.5060.000.043
    0100025.005.5040.000.788
    0100025.005.5040.000.755
    −110−1.681792831025.002.1440.000.060
    0100025.005.5040.001.012
    −1101.681792831025.008.8640.000.804
    0100025.005.5040.000.805
    下载: 导出CSV

    表  3  二次多项式回归方差分析

    Table  3.   Quadratic polynomial regression variance test results

    来源
    Source
    自由度
    df
    SeqSSAdjSSAdjMSFP
    回归 Regression 9 1.91598 1.91598 0.21289 7.11 0.003
    线性 Linear 3 1.32442 1.32442 0.44147 14.74 0.001
    平方 Square 3 0.54962 0.54962 0.18321 6.12 0.012
    交互作用 Interaction 3 0.04195 0.04195 0.01398 0.47 0.712
    残差误差 Residual 10 0.29956 0.29956 0.02996
    失拟 Misfit 5 0.24917 0.24917 0.04983 4.94 0.052
    纯误差 Pure error 5 0.05039 0.05039 0.01008
    合计 Total 19 2.21554
    下载: 导出CSV

    表  4  二次多项式回归系数及其显著性检验

    Table  4.   Quadratic polynomial regression coefficient and significance test


    Item
    系数
    Coefficient
    标准误
    Standard error
    TP
    常量 Constant0.819860.0705911.6150.000
    A−0.114260.07877−1.4510.178
    B0.506280.078726.4320.000
    C−0.067870.07877−0.8620.409
    A×A−0.219840.12896−1.7050.119
    B×B−0.504110.12890−3.9110.003
    C×C−0.210840.12896−1.6350.133
    A×B−0.196390.17291−1.1360.283
    A×C−0.048800.17312−0.2820.784
    B×C0.030380.172910.1760.864
    下载: 导出CSV
  • [1] HUANG C J, WANG T K, CHUNG S C, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9 [J]. BMB Reports, 2005, 38(1): 82−88. doi: 10.5483/BMBRep.2005.38.1.082
    [2] LV R, WANG D, ZOU M, et al. Analysis of Bacillus cereus cell viability, sublethal injury, and death induced by mild thermal treatment [J]. Journal of Food Safety, 2019, 39(1): .e12581. doi: 10.1111/jfs.12581
    [3] SONI A, OEY I, SILCOCK P, et al. Impact of temperature, nutrients, pH and cold storage on the germination, growth and resistance of Bacillus cereus spores in egg white [J]. Food Research International (Ottawa, Ont ), 2018, 106: 394−403. doi: 10.1016/j.foodres.2018.01.006
    [4] BEGYN K, KIM T D, HEYNDRICKX M, et al. Directed evolution by UV-C treatment of Bacillus cereus spores [J]. International Journal of Food Microbiology, 2019, 317: 108424.
    [5] WU X Z, LI H L, WANG Y, et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement [J]. Biocontrol Science and Technology, 2020, 30(4): 351−369. doi: 10.1080/09583157.2020.1711870
    [6] ZHOU J, FENG Z, LIU S, et al. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP‐10, suppresses Verticillium dahliae and mediates plant defence responses [J]. Molecular plant pathology, 2021, 22(1): 130−144. doi: 10.1111/mpp.13014
    [7] MARTÍNEZ-ÁLVAREZ J C, CASTRO-MARTÍNEZ C, SÁNCHEZ-PEÑA P, et al. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants [J]. World Journal of Microbiology and Biotechnology, 2016, 32(5): 1−10.
    [8] ZHANG J, LI Y, YUAN H, et al. Biological control of the cereal cyst nematode (Heterodera filipjevi) by Achromobacter xylosoxidans isolate 09X01 and Bacillus cereus isolate 09B18 [J]. Biological Control, 2016, 92: 1−6. doi: 10.1016/j.biocontrol.2015.08.004
    [9] VILJOEN J J F, LABUSCHAGNE N, FOURIE H, et al. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Tropical Plant Pathology, 2019, 44(3): 284−291. doi: 10.1007/s40858-019-00283-2
    [10] SUBEDI P, GATTONI K, LIU W, et al. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes [J]. Plants, 2020, 9(9): 1167. doi: 10.3390/plants9091167
    [11] GAO H, QI G, YIN R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine [J]. Scientific reports, 2016, 6(1): 1−11. doi: 10.1038/s41598-016-0001-8
    [12] ALI A M, AWAD M Y M, HEGAB S A, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato [J]. Journal of Plant Nutrition, 2021, 44(3): 411−420. doi: 10.1080/01904167.2020.1822399
    [13] 张海艳, 刘芳, 姜旭芳. 蜡样芽孢杆菌的抗逆性研究 [J]. 甘肃畜牧兽医, 2022, 52(3):34−36, 40. doi: 10.3969/j.issn.1006-799X.2022.03.011

    ZHANG H Y, LIU F, JIANG X F. Research on the stress resistance of Bacillus cereus [J]. Gansu Animal Husbandry and Veterinary Medicine, 2022, 52(3): 34−36, 40.(in Chinese) doi: 10.3969/j.issn.1006-799X.2022.03.011
    [14] VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis [J]. Canadian journal of microbiology, 2007, 53(6): 673−687. doi: 10.1139/W07-029
    [15] 杨传旭, 赵迪, 谭卓, 等. 响应面法优化根结线虫生防真菌Snef5的发酵工艺 [J]. 中国生物防治学报, 2016, 32(4):503−510. doi: 10.16409/j.cnki.2095-039x.2016.04.012

    YANG C X, ZHAO D, TAN Z, et al. Ferment Optimization of Biocontrol Fungus Snef5 against Meloidogyne incognita by Response Surface Methodology [J]. Chinese Journal of Biological Control, 2016, 32(4): 503−510.(in Chinese) doi: 10.16409/j.cnki.2095-039x.2016.04.012
    [16] ZHANG S, GAN Y, LIU J, et al. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes [J]. Frontiers in Microbiology, 2020, 11: 574601. doi: 10.3389/fmicb.2020.574601
    [17] 咸洪泉, 赵洪海, 李雅华, 等. 蜡样芽孢杆菌, 菌剂及其制备方法和应用: CN109749953A[P]. 2019-05-14.
    [18] DING S, CUI Y, XU F, et al. Characteristics of a transferable tet (45) gene conferring resistance to tetracyclines in probiotic Bacillus cereus [J]. Chinese Journal, 2020, 65(32): 3619−3625.
    [19] CHEN Y Y, WU H X, SUN P, et al. Remediation of chromium-contaminated soil based on Bacillus cereus WHX-1 immobilized on biochar: Cr(VI) transformation and functional microbial enrichment [J]. Frontiers in Microbiology, 2021, 12: 641913. doi: 10.3389/fmicb.2021.641913
    [20] 卢国柱. 蜡样芽孢杆菌中有效抗菌物质的分离、纯化及初步鉴定[D]. 烟台: 烟台大学, 2021.

    LU G Z. Isolation, purification and preliminary identification of effective antimicrobial substances from Bacillus cereus[D]. Yantai: Yantai University, 2021. (in Chinese)
    [21] RAMÍREZ V, MARTÍNEZ J, BUSTILLOS‐CRISTALES M R, et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum [J]. Journal of Applied Microbiology, 2022, 132(1): 470−482. doi: 10.1111/jam.15179
    [22] VILLARREAL-DELGADO M F, VILLA-RODRÍGUEZ E D, CIRA-CHÁVEZ L A, et al. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity [J]. Revista mexicana de fitopatología, 2018, 36(1): 95−130.
    [23] YANG F F, LONG C, WEI Z L, et al. Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae) [J]. Journal of Phycology, 2020, 56(5): 1208−1215. doi: 10.1111/jpy.13007
    [24] 陈倩, 张露源, 陈伯昌, 等. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析 [J]. 生物技术通报, 2021, 37(7):127−136.

    CHEN Q, ZHANG L Y, CHEN B C, et al. Optimization of fermentation conditions of Myrothecium verrucaria ZW-2, a biocontrol strain against Heterodera glycines and analysis of active substances [J]. Biotechnology Bulletin, 2021, 37(7): 127−136.(in Chinese)
    [25] 朱海云, 马瑜, 柯杨, 等. 抗猕猴桃细菌性溃疡病蜡样芽孢杆菌MA23培养基及发酵条件优化 [J]. 中国农学通报, 2021, 37(7):112−118. doi: 10.11924/j.issn.1000-6850.casb2020-0108

    ZHU H Y, MA Y, KE Y, et al. Optimization of culture medium and fermentation parameters of Bacillus cereus MA23 antagonistic to kiwifruit canker [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 112−118.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2020-0108
    [26] CHEN X, LI S, CONG X, et al. Optimization of Bacillus cereus Fermentation Process for Selenium Enrichment as Organic Selenium Source [J]. Frontiers in Nutrition, 2020, 7: 543−873.
    [27] 尹艳楠, 吴佳雯, 谈家金, 等. 松树内生蜡样芽孢杆菌NJSZ-13菌株发酵培养基及条件优化 [J]. 浙江林业科技, 2020, 40(6):9−17. doi: 10.3969/j.issn.1001-3776.2020.06.002

    YIN Y N, WU J W, TAN J J, et al. Optimization of medium and culture conditions for Bacillus cereus NJSZ-13 [J]. Journal of Zhejiang Forestry Science and Technology, 2020, 40(6): 9−17.(in Chinese) doi: 10.3969/j.issn.1001-3776.2020.06.002
    [28] 刘树森, 赵建龙, Ahmed Shahid, 等. 禾谷胞囊线虫(Heterodera avenae)在小麦上的侵染和种群动态. [J]. 云南农业大学学报(自然科学), 2017, 32(1):1−10.

    LIU S S, ZHAO J L, AHMED S, et al. Population Dynamics and Infection of Cereal Cyst Nematode (Heterodera avenae) in Wheat in Beijing. [J]. Journal of Yunnan Agricultural University, 2017, 32(1): 1−10.(in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  170
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-04-15
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回