• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

龙眼PIFs家族全基因组鉴定及其表达分析

李小芳 林晓艺 苏炳茜 张城瑜 罗彬彬 陈裕坤 杜迎刚 赖钟雄

李小芳,林晓艺,苏炳茜,等. 龙眼PIFs家族全基因组鉴定及其表达分析 [J]. 福建农业学报,2022,37(8):1025−1037 doi: 10.19303/j.issn.1008-0384.2022.008.008
引用本文: 李小芳,林晓艺,苏炳茜,等. 龙眼PIFs家族全基因组鉴定及其表达分析 [J]. 福建农业学报,2022,37(8):1025−1037 doi: 10.19303/j.issn.1008-0384.2022.008.008
LI X F, LIN X Y, SU B X, et al. Genome-wide Identification and Expressions of PIF Family in Longan [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1025−1037 doi: 10.19303/j.issn.1008-0384.2022.008.008
Citation: LI X F, LIN X Y, SU B X, et al. Genome-wide Identification and Expressions of PIF Family in Longan [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1025−1037 doi: 10.19303/j.issn.1008-0384.2022.008.008

龙眼PIFs家族全基因组鉴定及其表达分析

doi: 10.19303/j.issn.1008-0384.2022.008.008
基金项目: 国家自然科学基金项目(31572088);福建省高原学科建设经费项目(102/71201801101);福建农林大学科技创新专项基金(CXZX2020027A)
详细信息
    作者简介:

    李小芳(1996−),女,硕士,主要从事果树生物技术研究(E-mail:1585913092@qq.com

    通讯作者:

    杜迎刚(1977−),男,博士,教授,主要从事害虫生物防治、园艺害虫生物技术研究(E-mail:eduyingang@163.com

    赖钟雄(1966−),男,博士,研究员,主要从事园艺植物的生物技术与遗传资源研究(E-mail:laizx01@163.com

  • 中图分类号: S 667.2

Genome-wide Identification and Expressions of PIF Family in Longan

  • 摘要:   目的  PIFs属于 basic helix-loop-helix(bHLH) 转录因子家族的第 15 亚族,研究其在龙眼( Dimocarpus longan Lour.)中的表达特征可为其参与调控植物的生长发育和抵御逆境胁迫过程中的作用机制提供参考。  方法  基于龙眼基因组和转录组数据进行PIFs基因家族的鉴定与生物信息学分析,对其启动子序列进行顺式作用元件分析;基于龙眼体胚发生早期3个阶段[胚性愈伤组织( Embryogenic callus,EC)、不完全胚性紧实结构(Incomplete embryotic compacted structure,ICpEC)、球形胚(Spherical embryo,GE)]、不同组织部位(花、花蕾、叶、果皮、果肉、根、种子、茎、幼果)、不同温度(15 ℃、25 ℃、35 ℃)和不同光质(蓝光、白光和黑暗)处理下龙眼EC转录组数据,通过龙眼PIFs的FPKM值分析其表达模式,并采用实时荧光定量 PCR(Quantitative real-time polymerase chain reaction,qRT-PCR)分析DlPIFs在龙眼体胚发生早期、不同生长调节剂[生长素(2,4-D)、脱落酸(ABA)、赤霉素(GA3)、水杨酸(SA)、茉莉酸甲酯(MeJA)]处理下的表达情况。  结果  生物信息学分析表明所鉴定的龙眼PIFs家族8个成员均具有bHLH结构域,编码区长度介于975~2298 bp,包含5~8个外显子和6个motif,亚细胞定位预测均定位于细胞核。DlPIFs启动子中不仅含有响应光、激素和非生物胁迫的作用元件,还具有与种子生长和胚胎发育过程相关的作用元件。系统进化树分析显示DlPIFs分布在4大分支上,与拟南芥(Arabidopsis thaliana)、甜橙[Citrus sinensis (L.) Osbeck]亲缘关系较近。不同组织器官的转录组数据分析结果表明,DlPIF1-1的表达量在种子中最高,DlPIF1-2的表达量在果肉中最高,DlPIF4的表达量在茎中最高,DlPIF5的表达量在花蕾中最高,DlPIF7和DlPIF8的表达量在叶中最高。不同光质转录组数据分析结果表明,DlPIF1-1、DlPIF5和DlPIF8在蓝光处理下的表达量明显高于对照,DlPIF4在白光和蓝光处理下的表达量均明显高于对照,DlPIF1-2在3种光质处理下的表达量差别不明显。不同温度的转录组数据分析结果表明,相对高温(35 ℃)促进DlPIF4和DlPIF6的表达,抑制DlPIF1-1、DlPIF1-2、DlPIF3和DlPIF8的表达;相对低温(15 ℃)促进DlPIF1-1、DlPIF3和DlPIF5的表达,抑制DlPIF1-2、DlPIF4、DlPIF6和DlPIF8的表达。qRT-PCR结果显示,DlPIF1-1、DlPIF5、DlPIF6和DlPIF8的表达量随着龙眼体胚早期的发育不断下降,DlPIF1-2和DlPIF3的表达量在EC到ICpEC阶段下降,在ICpEC到GE阶段上升,DlPIF4和DlPIF7的表达模式与之相反。与其他成员相比,DlPIF5和DlPIF7的表达量在5种生长调节剂处理下都具有明显变化。  结论  DlPIFs家族在龙眼的生长发育进程中可能具有不同的功能,并可能参与生物胁迫和非生物胁迫的响应过程。
  • 图  1  龙眼PIFs保守结构域

    Figure  1.  Conserved domain of DlPIFs

    图  2  龙眼PIFs家族基因结构和蛋白质保守基序分布

    Figure  2.  Gene structure and protein conserved motifs of DlPIFs

    图  3  DlPIFs染色体定位

    Figure  3.  Chromosome distribution of DlPIFs

    图  4  DlPIFs家族启动子顺式作用元件分析

    Figure  4.  Cis-acting elements of DlPIFs

    图  5  龙眼、拟南芥、水稻、甜橙PIFs家族系统进化树

    Figure  5.  Phylogenetic tree of PIF families in Arabidopsis thaliana, Oryza sativa L., Citrus sinensis, and D. longan

    图  6  DlPIFs家族在非胚性和胚性培养物和不同组织器官的表达量热图

    Figure  6.  Heat map of expressions of DlPIFs in non-embryogenic and embryogenic cultures and various tissues and organs

    图  7  DlPIFs家族在不同光质条件下的表达量热图

    Figure  7.  Heat map of expressions of DlPIFs exposed to varied light

    图  8  DlPIFs家族在不同温度条件下的表达量热图

    Figure  8.  Heat map of expressions of DlPIFs under different temperatures

    图  9  龙眼PIFs家族体胚发生阶段表达分析

    Figure  9.  Expressions of DlPIFs during somatic embryogenesis

    图  10  生长调节剂处理下DlPIFs基因的相对表达量

    不同小写字母表示处理间差异显著(P < 0.05)。

    Figure  10.  Expressions of DlPIFs in response to exogenous hormones

    Data with different lowercase letters indicate significant differences at P<0.05.

    表  1  DlGRF基因家族qRT-PCR引物

    Table  1.   qRT-PCR primers of DlPIFs

    引物名称
    Primer name
    序列
    Sequences(5′-3′)   
    DlPIF1-1 F GCAAAACGGTCAGGTGGT
    R TTGGCGTCGTTGAGAGG
    DlPIF1-2 F CACATCACCACCACCGAA
    R TCCTCGCTATCACAGTCATCA
    DlPIF3 F TCTCAAACCGCGAAAACC
    R TCCAGACAACTCAGGCAAGA
    DlPIF4 F AGGGACCGACACATTTTCTG
    R TCGAAGGGTCCATAGTGAGC
    DlPIF5 F TACAGGGGCAGAAAATGAGC
    R TGAATCCACGAGACTGTTTCA
    DlPIF6 F GATGACCAATCCGAAGCTGT
    R CACTAAGATCAGCAGACCAC
    DlPIF7 F ATTCGTTCCATCTCCGTTTCT
    R AGAGTGCTGCCATCTTGTTGT
    DlPIF8 F TGATGCCCCCATGTTAGAC
    R AGCTTGTGGCTTGGTTGAC
    FSD-Q F GGTCAGATGGTGAAGCCGTAGAG
    R GTCTATGCCACCGATACAACAAACCC
    下载: 导出CSV

    表  2  龙眼PIFs成员基本理化性质

    Table  2.   Basic physicochemical properties of DlPIFs

    三代基因ID
    Third generation
    gene ID
    二代基因ID
    Second generation
    gene ID
    基因名称
    Gene name
    注释
    Annotated
    CDS长度
    Length/bp
    氨基酸数
    Amino acid number
    等电点
    PI
    分子量
    Molecular weight/Da
    不稳定系数
    Instability index
    亲水性
    Gravy
    Dlo012584Dlo_012166.1DlPIF1-1AtPIF1-116055346.3959036.3262.06−0.696
    Dlo015892Dlo_000274.1DlPIF1-2AtPIF1-211973985.4443473.3356.83−0.545
    Dlo034359DlPIF3AtPIF322987656.1082158.8454.69−0.586
    Dlo028134Dlo_000977.1DlPIF4AtPIF416175386.7358258.9762.25−0.647
    Dlo014068Dlo_018063.1DlPIF5AtPIF59753245.4835089.7568.21−0.624
    Dlo011892DlPIF6AtPIF616955409.2162892.1457.87−0.741
    Dlo031044Dlo_031800.1DlPIF7AtPIF713624538.3949786.8974.28−0.776
    Dlo012986Dlo_028817.1DlPIF8AtPIF814314768.5550818.3758.46−0.579
    下载: 导出CSV

    表  3  龙眼PIFs家族二级结构及亚细胞定位

    Table  3.   Secondary structure and subcellular localization of DlPIFs

    基因
    Gene
    α-螺旋
    Alpha
    helix/%
    β-转角
    Beta
    turn/%
    延伸链
    Extended
    strand/%
    无规卷曲
    Random
    coil/%
    亚细胞定位
    Subcellular
    localization
    DLPIF1-123.972.627.1266.29细胞核
    DLPIF1-221.361.268.0469.35细胞核
    DLPIF317.122.097.4573.33细胞核
    DLPIF420.261.865.3972.49细胞核
    DLPIF524.383.708.3363.58细胞核
    DLPIF623.052.304.9669.68细胞核
    DLPIF730.021.323.7564.9细胞核
    DLPIF829.411.475.0464.08细胞核
    下载: 导出CSV
  • [1] 张媛媛. 光敏色素的结构及其信号调控机制 [J]. 湖北农业科学, 2020, 59(4):5−10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001

    ZHANG Y Y. Structure and signal regulation mechanism of phytochrome [J]. Hubei Agricultural Sciences, 2020, 59(4): 5−10.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2020.04.001
    [2] ZHONG S W, SHI H, XUE C, et al. A molecular framework of light-controlled phytohormone action in Arabidopsis [J]. Current Biology, 2012, 22(16): 1530−1535. doi: 10.1016/j.cub.2012.06.039
    [3] LAU O S, DENG X W. Plant hormone signaling lightens up: Integrators of light and hormones [J]. Current Opinion in Plant Biology, 2010, 13(5): 571−577. doi: 10.1016/j.pbi.2010.07.001
    [4] XU X S, PAIK I, ZHU L, et al. Illuminating progress in phytochrome-mediated light signaling pathways [J]. Trends in Plant Science, 2015, 20(10): 641−650. doi: 10.1016/j.tplants.2015.06.010
    [5] KHANNA R, HUQ E, KIKIS E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic Helix-loop-Helix transcription factors [J]. The Plant Cell, 2004, 16(11): 3033−3044. doi: 10.1105/tpc.104.025643
    [6] NI M, TEPPERMAN J M, QUAIL P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic Helix-loop-Helix protein [J]. Cell, 1998, 95(5): 657−667. doi: 10.1016/S0092-8674(00)81636-0
    [7] ZHANG Y, MAYBA O, PFEIFFER A, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis [J]. PLoS Genetics, 2013, 9(1): e1003244. doi: 10.1371/journal.pgen.1003244
    [8] JEONG J, CHOI G. Phytochrome-interacting factors have both shared and distinct biological roles [J]. Molecules and Cells, 2013, 35(5): 371−380. doi: 10.1007/s10059-013-0135-5
    [9] DE LUCAS M, PRAT S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals [J]. The New Phytologist, 2014, 202(4): 1126−1141. doi: 10.1111/nph.12725
    [10] DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development [J]. Annual Review of Plant Biology, 2016, 67: 513−537. doi: 10.1146/annurev-arplant-043015-112252
    [11] OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic Helix-loop-Helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana [J]. The Plant Cell, 2004, 16(11): 3045−3058. doi: 10.1105/tpc.104.025163
    [12] LI L, LJUNG K, BRETON G, et al. Linking photoreceptor excitation to changes in plant architecture [J]. Genes & Development, 2012, 26(8): 785−790.
    [13] MUTASA-GÖTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks [J]. Journal of Experimental Botany, 2009, 60(7): 1979−1989. doi: 10.1093/jxb/erp040
    [14] HUQ E, AL-SADY B, HUDSON M, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis [J]. Science, 2004, 305(5692): 1937−1941. doi: 10.1126/science.1099728
    [15] STEPHENSON P G, FANKHAUSER C, TERRY M J. PIF3 is a repressor of chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7654−7659. doi: 10.1073/pnas.0811684106
    [16] LIU Z J, ZHANG Y Q, WANG J F, et al. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings [J]. Plant Science, 2015, 238: 64−72. doi: 10.1016/j.plantsci.2015.06.001
    [17] HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis [J]. The EMBO Journal, 2002, 21(10): 2441−2450. doi: 10.1093/emboj/21.10.2441
    [18] LORRAIN S, ALLEN T, DUEK P D, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors [J]. The Plant Journal, 2007, 53(2): 312−323. doi: 10.1111/j.1365-313X.2007.03341.x
    [19] FRANKLIN K A, LEE S H, PATEL D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20231−20235. doi: 10.1073/pnas.1110682108
    [20] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484(7393): 242−245. doi: 10.1038/nature10928
    [21] 汪硕, 丁岚, 刘建祥, 等. 拟南芥热形态建成中PIF4下游基因研究 [J]. 生物技术通报, 2018, 34(7):57−65. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211

    WANG S, DING L, LIU J X, et al. PIF4-regulated thermo-responsive genes in Arabidopsis [J]. Biotechnology Bulletin, 2018, 34(7): 57−65.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2018-0211
    [22] FIORUCCI A S, GALVÃO V C, INCE Y Ç, et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings [J]. The New Phytologist, 2020, 226(1): 50−58. doi: 10.1111/nph.16316
    [23] 徐向东, 任逸秋, 张利, 等. 杨树PIF基因家族成员表达模式研究 [J]. 林业科学研究, 2018, 31(2):19−25. doi: 10.13275/j.cnki.lykxyj.2018.02.003

    XU X D, REN Y Q, ZHANG L, et al. Analysis of expression pattern of PIF family members in Populus [J]. Forest Research, 2018, 31(2): 19−25.(in Chinese) doi: 10.13275/j.cnki.lykxyj.2018.02.003
    [24] JIANG B C, SHI Y T, ZHANG X Y, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6695−E6702.
    [25] 王峰. PhyA、HY5和PIF4在光质调控番茄低温抗性中的机制研究[D]. 杭州: 浙江大学, 2017.

    WANG F. Roles and mechanisms of phyA-, HY5- and PIF4- mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [26] 陈裕坤, 林晓艺, 赖钟雄. 龙眼体细胞胚胎发生研究进展 [J]. 热带作物学报, 2020, 41(10):1990−2002. doi: 10.3969/j.issn.1000-2561.2020.10.006

    CHEN Y K, LIN X Y, LAI Z X. Advances in somatic embryogenesis of Dimocarpus longan lour [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 1990−2002.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.10.006
    [27] 赖钟雄, 潘良镇, 陈振光. 龙眼胚性细胞系的建立与保持 [J]. 福建农业大学学报, 1997, 26(2):160−167.

    LAI Z X, PAN L Z, CHEN Z G. Establishment and maintenance of Longan embryogenic cell lines [J]. Journal of Fujian Agricultural University, 1997, 26(2): 160−167.(in Chinese)
    [28] 刘范, 田娜, 孙雪丽, 等. 香蕉GLP基因家族全基因组鉴定及表达分析 [J]. 园艺学报, 2020, 47(10):1930−1946. doi: 10.16420/j.issn.0513-353x.2019-0983

    LIU F, TIAN N, SUN X L, et al. Genome-wide identification and expression analysis of banana GLP gene family [J]. Acta Horticulturae Sinica, 2020, 47(10): 1930−1946.(in Chinese) doi: 10.16420/j.issn.0513-353x.2019-0983
    [29] 李汉生. 光对龙眼细胞培养中功能性代谢产物的影响及分子机制[D]. 福州: 福建农林大学, 2018.

    LI H S. Effect of light on functional metabolites and its molecular mechanism in cultivation of Longan cells[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
    [30] LIN Y L, LAI Z X. Reference gene selection for qPCR analysis during somatic embryogenesis in Longan tree [J]. Plant Science, 2010, 178(4): 359−365. doi: 10.1016/j.plantsci.2010.02.005
    [31] LEIVAR P, MONTE E. PIFs: Systems integrators in plant development [J]. The Plant Cell, 2014, 26(1): 56−78. doi: 10.1105/tpc.113.120857
    [32] GAO Y, REN X Y, QIAN J J, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L. ): Identification, evolution, and expression analysis [J]. Acta Physiologiae Plantarum, 2019, 41(1): 8. doi: 10.1007/s11738-018-2802-9
    [33] 吴昊, 张城瑜, 倪珊珊, 等. 香蕉基因MaPIF家族全基因组鉴定及激素表达模式[J]. 应用与环境生物学报. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036.

    WU H, ZHANG C Y, NI S S, et al. Genome-wide identification and hormone expression pattern of the MaPIF family of banana gene[J]. Chinese Journal of Applied and Environmental Biology. https://doi.org/10.19675/j.cnki.1006-687x.2021.02036. (in Chinese)
    [34] 荐红举, 尚丽娜, 金中辉, 等. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析 [J]. 作物学报, 2022, 48(1):86−98.

    JIAN H J, SHANG L N, JIN Z H, et al. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86−98.(in Chinese)
    [35] 袁凌云, 张利婷, 蓝天, 等. 白菜PIF基因家族及表达模式分析[J]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html.

    YUAN L Y , ZHANG L T, LAN T, et al. Identification and expression analysis of PIF gene family in Chinese cabbage[J]. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20211123.1315.004.html. (in Chinese)
    [36] 吴广霞. 玉米光敏色素作用因子PIFs在光信号和光形态建成中的功能研究[D]. 北京: 中国农业科学院, 2020

    WU G X. Initial functional characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
    [37] 武志强, 周家伟. 植物细胞器基因编辑研究进展 [J]. 广西植物, 2021, 41(10):1654−1664. doi: 10.11931/guihaia.gxzw202106033

    WU Z Q, ZHOU J W. Advances in plant organelle gene editing [J]. Guihaia, 2021, 41(10): 1654−1664.(in Chinese) doi: 10.11931/guihaia.gxzw202106033
    [38] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/Helix-loop-Helix transcription factor family [J]. The Plant Cell, 2003, 15(8): 1749−1770. doi: 10.1105/tpc.013839
    [39] KIM J, YI H, CHOI G, et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction [J]. The Plant Cell, 2003, 15(10): 2399−2407. doi: 10.1105/tpc.014498
    [40] MONTE E, TEPPERMAN J M, AL-SADY B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16091−16098. doi: 10.1073/pnas.0407107101
    [41] FUJIMORI T, YAMASHINO T, KATO T, et al. Circadian-controlled basic/Helix-loop-Helixfactor,PIL6, implicated in light-signal transduction in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2004, 45(8): 1078−1086. doi: 10.1093/pcp/pch124
    [42] LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels [J]. The Plant Cell, 2008, 20(2): 337−352. doi: 10.1105/tpc.107.052142
    [43] PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiology, 2017, 176(2): 1025−1038.
    [44] WANG F F, LIAN H L, KANG C Y, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana [J]. Molecular Plant, 2010, 3(1): 246−259. doi: 10.1093/mp/ssp097
    [45] 任小芸. ZmPIFs基因的克隆、表达及AtPIFs基因的抗旱功能研究[D]. 扬州: 扬州大学, 2017.

    REN X Y. Cloning and expression of ZmPIFs and study on the drought resistant function of AtPIFs[D]. Yangzhou: Yangzhou University, 2017. (in Chinese)
    [46] KOINI M A, ALVEY L, ALLEN T, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4 [J]. Current Biology, 2009, 19(5): 408−413. doi: 10.1016/j.cub.2009.01.046
    [47] QIU Y J, LI M N, KIM R J A, et al. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA [J]. Nature Communications, 2019, 10: 140. doi: 10.1038/s41467-018-08059-z
    [48] LEE C M, THOMASHOW M F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 15054−15059. doi: 10.1073/pnas.1211295109
    [49] LAU O S, HUANG X, CHARRON J B, et al. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock [J]. Molecular Cell, 2011, 43(5): 703−712. doi: 10.1016/j.molcel.2011.07.013
    [50] 陈笑笑. PIF4介导光质调控番茄低温抗性的作用机制[D]. 杭州: 浙江大学, 2019.

    CHEN X X. The mechanisms of PIF4-mediated light quality-regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [51] 李春平, 赖成霞, 徐海江, 等. 不同因素对早熟陆地棉离体胚成苗的影响 [J]. 新疆农业科学, 2020, 57(9):1596−1603.

    LI C P, LAI C X, XU H J, et al. Effects of different factors on early-maturing upland cotton excised embryos into seedlings [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1596−1603.(in Chinese)
    [52] 石岭, 霍秀文, 郝春光. 不同光质对河套蜜瓜器官培养的影响 [J]. 内蒙古农牧学院学报, 1999, 20(2):76−79.

    SHI L, HUO X W, HAO C G. Effects of different light quality on organ cultire of Cucumis melo l. var cantalupensis naut [J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1999, 20(2): 76−79.(in Chinese)
    [53] 胡恒康. 山核桃合子胚发育、体胚再生及其生物学特性研究[D]. 南昌: 江西农业大学, 2011.

    HU H K. Studies on biological characteristics of development and regeneration of zygotic embryos in hickory (Carya cathayensis sarg.)[D]. Nanchang: Jiangxi Agricultural University, 2011. (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  199
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-04
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回