• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红心莲毁灭炭疽病菌生物学特性及高效安全药剂筛选

董金龙

董金龙. 红心莲毁灭炭疽病菌生物学特性及高效安全药剂筛选 [J]. 福建农业学报,2022,37(8):1067−1071 doi: 10.19303/j.issn.1008-0384.2022.008.012
引用本文: 董金龙. 红心莲毁灭炭疽病菌生物学特性及高效安全药剂筛选 [J]. 福建农业学报,2022,37(8):1067−1071 doi: 10.19303/j.issn.1008-0384.2022.008.012
DONG J L. Biological Characteristics and Fungicides for Effective Control of Colletotrichum destructivum on Echeveria Perle von Nürnberg [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1067−1071 doi: 10.19303/j.issn.1008-0384.2022.008.012
Citation: DONG J L. Biological Characteristics and Fungicides for Effective Control of Colletotrichum destructivum on Echeveria Perle von Nürnberg [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1067−1071 doi: 10.19303/j.issn.1008-0384.2022.008.012

红心莲毁灭炭疽病菌生物学特性及高效安全药剂筛选

doi: 10.19303/j.issn.1008-0384.2022.008.012
基金项目: 福建省林业科技项目[闽林科便函(2020)9号]
详细信息
    作者简介:

    董金龙(1973−),男,硕士,高级工程师,研究方向:园艺植物栽培与加工贮运技术(E-mail:306327862@qq.com

  • 中图分类号: S 436

Biological Characteristics and Fungicides for Effective Control of Colletotrichum destructivum on Echeveria Perle von Nürnberg

  • 摘要:   目的  明确红心莲炭疽病菌毁灭炭疽菌(Colletotrichum destructivum)的生物学特性。测定不同化学结构和作用机制的6种杀菌剂对毁灭炭疽菌的室内毒力,筛选高效安全杀菌剂。  方法  采用菌丝生长速率法测定温度、pH、光周期和碳、氮源对菌丝生长的影响,以及6种杀菌剂对毁灭炭疽菌抑制效果。  结果  毁灭炭疽菌菌丝生长最适温度为30 ℃、最适pH为8,光周期对菌丝生长影响小,最适碳、氮源分别为淀粉和酵母。室内毒力测定结果表明,所选的6种杀菌剂对病原菌毒力差异大,其中咯菌腈的毒力最强,EC50为0.0236 mg·L−1;其次为咪鲜胺和吡唑醚菌酯,EC50分别为0.0306 和0.0487 mg·L−1;甲基硫菌灵和苯醚甲环唑的毒力较弱,EC50分别为0.1526和0.1955 mg·L−1;多菌灵的毒力最弱,EC50为0.2199 mg·L−1  结论  温度、pH、碳氮源对毁灭炭疽菌菌丝生长具有一定影响。咯菌腈、咪鲜胺和吡唑醚菌酯等杀菌剂对毁灭炭疽菌有较好的室内毒力。
  • 图  1  温度对毁灭炭疽病菌菌丝生长的影响

    不同小写字母表示处理间差异极显著(P<0.05)。下同。

    Figure  1.  Mycelial growth of C. destructivum affected by temperature

    Data with different lowercase letters indicate significant differences between treatments (P<0.05). Same for below.

    图  2  pH对毁灭炭疽病菌菌丝生长的影响

    Figure  2.  Mycelial growth of C. destructivum affected by pH

    图  3  光周期对毁灭炭疽病菌菌丝生长的影响

    Figure  3.  Mycelial growth of C. destructivum affected by photoperiods

    图  4  碳源对毁灭炭疽病病原菌菌丝生长的影响

    Figure  4.  Mycelial growth of C. destructivum affected by carbon source

    图  5  氮源对毁灭炭疽病病原菌菌丝生长的影响

    Figure  5.  Mycelial growth of C. destructivum affected by nitrogen source

    表  1  6种杀菌剂对毁灭炭疽病菌的室内毒力

    Table  1.   Toxicities of 6 fungicides against C. destructivum

    供试药剂
    Fungicides
    毒力回归方程
    Toxicity regression equation
    EC50/(mg·L−195% 置信区间
    95% confidence interval
    /(mg·L−1
    相关系数 r
    Correlation coefficient r
    甲基硫菌灵
    Thiophanate-Methyl
    y=5.556 4+0.681 6x0.152 60.122 9~0.189 60.996 8
    咪鲜胺
    Prochloraz
    y=5.772 6+0.510 1x0.030 60.024 6~0.038 00.997 4
    吡唑醚菌酯Pyraclostrobiny=5.789 9+0.601 9x0.048 70.042 6~0.055 70.998 9
    咯菌腈
    Fludioxonil
    y=5.817 3+0.502 2x0.023 60.019 8~0.028 00.998 4
    苯醚甲环唑Difenoconazoley=5.520 3+0.733 9x0.195 50.145 4~0.262 80.994 3
    多菌灵
    Carbendazim
    y=5.472 8+0.718 9x0.219 90.181 0~0.267 20.997 5
    下载: 导出CSV
  • [1] GRIFFITHS H, MALES J. Succulent plants[J]. Current Biology, 2017, 27(17): R890–R896.
    [2] 中国花卉协会. 2018年12月各地盆花市场行情 [J]. 中国花卉园艺, 2019(3):51−52.

    CHINA FLOWER ASSOCIATION. Potted flower market in December 2018 [J]. China Flowers & Horticulture, 2019(3): 51−52.(in Chinese)
    [3] YAO J A, HUANG P, CHEN H X, et al. Anthracnose pathogen of the succulent plant Echeveria ‘Perle von Nürnberg’ [J]. Australasian Plant Pathology, 2020, 49(2): 209−212. doi: 10.1007/s13313-020-00693-w
    [4] TOMIOKA K, NISHIKAWA J, MORIWAKI J, et al. Anthracnose of snapdragon caused by Colletotrichum destructivum [J]. Journal of General Plant Pathology, 2011, 77(1): 60−63. doi: 10.1007/s10327-010-0278-6
    [5] VASIĆ T, KRNJAJA V, JEVREMOVIĆ D, et al. Morphological and Molecular Identification of Colletotrichum destructivum from alfalfa[C]. 7th Congress on Plant Protection, 2014: 24−28.
    [6] MACDONALD J L, PUNJA Z K. Identification of Colletotrichum destructivum causing anthracnose of Wasabia japonica in British Columbia[C]. Canadian Phytopathological Society British Columbia Regional Meeting, 2015: 38.
    [7] 冉飞, 陈佳, 莫飞旭, 等. 百香果炭疽病菌生物学特性及室内药剂筛选 [J]. 热带作物学报, 2021, 42(4):1080−1085. doi: 10.3969/j.issn.1000-2561.2021.04.025

    RAN F, CHEN J, MO F X, et al. Biological characteristics of the pathogen and fungicides screening in laboratory for anthracnose of Passiflora edulia Sims [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1080−1085.(in Chinese) doi: 10.3969/j.issn.1000-2561.2021.04.025
    [8] CROUCH J A, CROUCH J A. Anthracnose of cereals and grasses [J]. Fungal Diversity, 2009, 39: 19−44.
    [9] BERTETTI D, GULLINO M, GARIBALDI A. Effect of leaf wetness duration, temperature and inoculum concentration on infection of evergreen azalea by Colletotrichum acutatum, the causal agent of anthracnose [J]. Journal of Plant Pathology, 2009, 91(3): 763−766.
    [10] 王芳, 王晓立, 韩浩章, 等. 多肉植物青星美人的黑腐病病原鉴定及生物学特性 [J]. 湖南农业大学学报(自然科学版), 2021, 47(5):540−546.

    WANG F, WANG X L, HAN H Z, et al. Identification and biological characteristics of black rot pathogen on succulent plant Pachyphytum ‘Dr Cornelius' [J]. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(5): 540−546.(in Chinese)
    [11] SUN H, TIAN J, STEINKELLNER S, et al. Identification and characterization of Colletotrichum destructivum causing anthracnose on sunflower [J]. Archives of Microbiology, 2020, 202(6): 1459−1467. doi: 10.1007/s00203-020-01861-8
    [12] 张琳, 彭琳, 邵郅伟, 等. 南瓜炭疽病菌Colletotrichum brevisporum生物学特性及药剂防治 [J]. 植物保护, 2021, 47(4):59−65.

    ZHANG L, PENG L, SHAO Z W, et al. Biological characteristics and indoor fungicide screening of Colletotrichum brevisporum causing pumpkin anthracnose [J]. Plant Protection, 2021, 47(4): 59−65.(in Chinese)
    [13] 娄喜艳, 王欣阳, 裴冬丽. 河南商丘月季炭疽病的病原菌鉴定及生物学特性 [J]. 江苏农业科学, 2021, 49(22):116−121.

    LOU X Y, WANG X Y, PEI D L. Identification and biological characteristics of pathogenic bacteria of rose anthracnose in Shangqiu Henan Province [J]. Jiangsu Agricultural Sciences, 2021, 49(22): 116−121.(in Chinese)
    [14] 孟珂, 张亚波, 常君, 等. 8种杀菌剂对9种薄壳山核桃炭疽病病原菌的毒力测定 [J]. 林业科学研究, 2021, 34(1):153−164. doi: 10.13275/j.cnki.lykxyj.2021.01.019

    MENG K, ZHANG Y B, CHANG J, et al. Toxicity test with 8 fungicides against 9 pathogens of pecan anthracnose (Colletotrichum spp. ) [J]. Forest Research, 2021, 34(1): 153−164.(in Chinese) doi: 10.13275/j.cnki.lykxyj.2021.01.019
    [15] 高鹏, 刘琳, 刘昀鑫, 等. 不同作用机制杀菌剂对燕麦炭疽病病菌的室内毒力测定 [J]. 草业科学, 2021, 38(9):1737−1744.

    GAO P, LIU L, LIU Y X, et al. Toxicity testing of different fungicides for Colletotrichum cereale on oat anthracnose [J]. Pratacultural Science, 2021, 38(9): 1737−1744.(in Chinese)
    [16] 李少卡, 何凡, 陈哲, 等. 防治荔枝炭疽病的药剂筛选及田间应用 [J]. 农药, 2019, 58(10):773−776.

    LI S K, HE F, CHEN Z, et al. Effective fungicides screening and field application for Litchi anthracnose [J]. Agrochemicals, 2019, 58(10): 773−776.(in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  114
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-10-05
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回