• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同致病力青枯雷尔氏菌诱导番茄防御相关信号途径基因的表达分析

郑雪芳 王梓然 朱育菁 陈燕萍 王阶平 刘波

郑雪芳,王梓然,朱育菁,等. 不同致病力青枯雷尔氏菌诱导番茄防御相关信号途径基因的表达分析 [J]. 福建农业学报,2022,37(1):79−83 doi: 10.19303/j.issn.1008-0384.2022.01.011
引用本文: 郑雪芳,王梓然,朱育菁,等. 不同致病力青枯雷尔氏菌诱导番茄防御相关信号途径基因的表达分析 [J]. 福建农业学报,2022,37(1):79−83 doi: 10.19303/j.issn.1008-0384.2022.01.011
ZHENG X F, WANG Z R, ZHU Y J, et al. Expressions of Defense Signal Pathway Genes in Tomato Plant Induced by Ralstonia solanacearum of Different Virulence [J]. Fujian Journal of Agricultural Sciences,2022,37(1):79−83 doi: 10.19303/j.issn.1008-0384.2022.01.011
Citation: ZHENG X F, WANG Z R, ZHU Y J, et al. Expressions of Defense Signal Pathway Genes in Tomato Plant Induced by Ralstonia solanacearum of Different Virulence [J]. Fujian Journal of Agricultural Sciences,2022,37(1):79−83 doi: 10.19303/j.issn.1008-0384.2022.01.011

不同致病力青枯雷尔氏菌诱导番茄防御相关信号途径基因的表达分析

doi: 10.19303/j.issn.1008-0384.2022.01.011
基金项目: 福建省自然科学基金项目(2019J01117);福建省农业科学院对外合作项目(DWHZ2021-07);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021019)
详细信息
    作者简介:

    郑雪芳(1977−),女,博士,副研究员,主要从事植物病害生物防治的研究(E-mail:zhengxuefangfz@163.com

    通讯作者:

    刘波(1957−),男,博士,研究员,主要从事生物技术和生物农药的研究(E-mail:fzliubo@163.com

  • 中图分类号: S 436.8

Expressions of Defense Signal Pathway Genes in Tomato Plant Induced by Ralstonia solanacearum of Different Virulence

  • 摘要:   目的  探究不同致病力青枯雷尔氏菌诱导番茄防御相关基因的表达水平,为探明无致病力青枯雷尔氏菌的生防机制奠定基础。  方法  以无菌水为对照(CK),分别接种青枯雷尔氏菌强致病力菌株FJAT91和无致病力菌株FJAT1458,接种后不同时间(0 ,3,6 ,12 ,24 ,36 ,48 ,72 h)取样,利用荧光定量PCR技术,检测接种不同致病力青枯雷尔氏菌后番茄植株中水杨酸(SA)信号转导途径的gluAPR-1a基因、茉莉酸(JA)信号转导途径的loxApin2基因及乙烯(ET)信号转导途径的OsmPR-1a基因相对表达量的变化。  结果  菌株FJAT1458和FJAT91均能诱导番茄gluAPR-1aloxApin2、OsmPR-1a基因的表达,接种后期(36 h之后),这些基因(PR-1aOsm除外)在FJAT1458处理组的表达量均比FJAT91处理组高;FJAT1458和FJAT91诱导gluAPR-1A基因表达量呈“先上升后下降”的趋势,接种12 h表达量最大;FJAT1458诱导番茄植株loxApin2基因表达量均显著高于CK,FJAT91诱导番茄植株loxA基因和pin2基因表达量在接种初期显著高于CK和FJAT1458处理组,后期迅速降低;FJAT-91诱导番茄植株Osm基因显著高于FJAT1458和对照处理(72 h除外),该菌株诱导番茄植株PR-1b基因表达量变化较为强烈,接种3 h,其诱导的PR-1b基因表达量为CK的251.33倍。  结论  不同致病力青枯雷尔氏菌诱导番茄防御相关基因表达量不同,可以进一步通过转录组法挖掘更多差异表达的基因。
  • 图  1  接种青枯菌不同时间番茄叶片gluA基因(A)和PR-1a基因(B)相对表达量

    Figure  1.  Relative expressions of gluA (A) and PR-1a (B) in tomato leaves after R. solanacearum inoculation for different time lengths

    图  2  接种青枯菌不同时间番茄叶片loxA基因(A)和pin2基因(B)相对表达量

    Figure  2.  Relative expressions of loxA (A) and pin2 (B) in tomato leaves after R. solanacearum inoculation for different time lengths

    图  3  接种青枯菌不同时间番茄叶片Osm基因(A)和PR-1b基因(B)相对表达量

    Figure  3.  Relative expressions of Osm (A) and PR-1b (B) in tomato leaves after R. solanacearum inoculation for different time lengths

    表  1  RT-PCR检测基因的特异引物序列

    Table  1.   Specific primer sequences used for RT-PCR

    检测基因
    Tested
    gene
    信号通路
    Signal pathways
    基因库
    登记号
    GenBank accession no.
    引物序列
    Primer sequence
    gIuA SA M80604 F: TCAGCAGGGTTGCAAAATCA
    R: CTCTAGGTGGGTAGGTGTTGGTTAA
    PR-1a SA M69247 F: TCT TGT GAG GCC CAA AAT TC
    R: ATA GTC TGG CCT CTC GGA CA
    loxA JA U09026 F: TGGTAGACCACCAACACGAA
    R: GACCAAAACGCTCGTCTCTC
    pin2 JA AY129402 F: TGATGCCAAGGCTTGTACTAGAGA
    R: AGCGGACTTCCTTCTGAACGT
    PR-1b ET X14065 F: CCA AGA CTA TCT TGC GGT TC
    R: GAA CCT AAG CCA CGA TAC CA
    Osmotin-like
    ET M21346 F: TGTACCACGTTTGGAGGACA
    R: ACCAGGGCAAGTAAATGTGC
    下载: 导出CSV
  • [1] HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum [J]. Annual Review of Phytopathology, 1991, 29: 65−87. doi: 10.1146/annurev.py.29.090191.000433
    [2] PRIOR P, AILLOUD F, DALSING B L, et al. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species [J]. BMC Genomics, 2016, 17: 90. doi: 10.1186/s12864-016-2413-z
    [3] SUGA Y, HORITA M, UMEKITA M, et al. Pathogenic characters of Japanese potato strains of Ralstonia solanacearum [J]. Journal of General Plant Pathology, 2013, 79(2): 110−114. doi: 10.1007/s10327-013-0429-7
    [4] CELLIER G, PRIOR P. Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato [J]. Phytopathology, 2010, 100(11): 1250−1261. doi: 10.1094/PHYTO-02-10-0059
    [5] BALABEL N M, EWED W E, MOSTAPHA M I, et al. Some epidemiological aspects of Ralstonia solanacearum [J]. Egypt Journal of Agriculture Research, 2005, 83(4): 1547−1563.
    [6] FREY P, PRIOR P, MARIE C, et al. Hrp mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt [J]. Applied and Environmental Microbiology, 1994, 60(9): 3175−3181. doi: 10.1128/aem.60.9.3175-3181.1994
    [7] 杨宇红, 刘俊平, 杨翠荣, 等. 无致病力hrp-突变体防治茄科蔬菜青枯病 [J]. 植物保护学报, 2008, 35(5):433−437. doi: 10.3321/j.issn:0577-7518.2008.05.010

    YANG Y H, LIU J P, YANG C R, et al. Control of Solanacearum vegetable bacterial wilt with avirulent hrp- mutants [J]. Acta Phytophylacica Sinica, 2008, 35(5): 433−437.(in Chinese) doi: 10.3321/j.issn:0577-7518.2008.05.010
    [8] 刘波, 蓝江林, 朱育菁, 等. 植物免疫系统的研究与应用 [J]. 中国农学通报, 2007, 23(S):163−172.

    LIU B, LAN J L, ZHU Y J, et al. Study and application of Plant immune system [J]. Chinese Agricultural Science Bulletin, 2007, 23(S): 163−172.(in Chinese)
    [9] FENG D X, TASSET C, HANEMIAN M, et al. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling [J]. The New Phytologist, 2012, 194(4): 1035−1045. doi: 10.1111/j.1469-8137.2012.04113.x
    [10] PARROTT D L, HUANG L, FISCHER A M. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense [J]. Plant Physiology and Biochemistry, 2016, 100: 130−140. doi: 10.1016/j.plaphy.2016.01.005
    [11] BLOCK A, SCHMELZ E, O'DONNELL P J, et al. Systemic acquired tolerance to virulent bacterial pathogens in tomato [J]. Plant Physiology, 2005, 138(3): 1481−1490. doi: 10.1104/pp.105.059246
    [12] THALER J S, OWEN B, HIGGINS V J. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles [J]. Plant Physiology, 2004, 135(1): 530−538. doi: 10.1104/pp.104.041566
    [13] ISHIHARA T, MITSUHARA I, TAKAHASHI H, et al. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato [J]. Plos One, 2012, 7(10): e46763. doi: 10.1371/journal.pone.0046763
    [14] CHEN Y N, REN X P, ZHOU X J, et al. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L. ) root transcriptome on infection with the Ralstonia solanacearum [J]. BMC Genomics, 2014, 15: 1078. doi: 10.1186/1471-2164-15-1078
    [15] ZULUAGA A P, SOLÉ M, LU H B, et al. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii [J]. BMC Genomics, 2015, 16: 246. doi: 10.1186/s12864-015-1460-1
    [16] 郑雪芳, 刘波, 林乃铨, 等. 青枯雷尔氏菌无致病力突变菌株的构建及其防效评价模型分析 [J]. 植物病理学报, 2013, 43(5):518−531.

    ZHENG X F, LIU B, LIN N Q, et al. Construction of Ralstonia solanacearum avirulent mutants and evaluation model of their control efficacy against tomato bacterial wilt disease [J]. Acta Phytopathologica Sinica, 2013, 43(5): 518−531.(in Chinese)
    [17] 郑雪芳, 朱育菁, 刘波, 等. 番茄青枯病植物疫苗胶悬菌剂的制备及其对病害的防治效果 [J]. 植物保护, 2017, 43(2):208−211. doi: 10.3969/j.issn.0529-1542.2017.02.037

    ZHENG X F, ZHU Y J, LIU B, et al. Preparation of colloidal suspension agent used as plant vaccine against tomato bacterial wilt disease and its control efficacy [J]. Plant Protection, 2017, 43(2): 208−211.(in Chinese) doi: 10.3969/j.issn.0529-1542.2017.02.037
    [18] KELMAN A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium [J]. Phytopathology, 1954, 44: 693−695.
    [19] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method [J]. Nature Protocols, 2008, 3(6): 1101−1108. doi: 10.1038/nprot.2008.73
    [20] 陈达. 拮抗菌和青枯菌无致病力突变株防控茄科作物青枯病的效应和机理研究[D]. 南京: 南京农业大学, 2014.

    CHEN D. The control efficacy of bacterial wilt in solanaceae crops by antagaonistic bacterium and avirulent mutants of Ralstonia solanacearum and mechanisms [D]. Nanjing: Nanjing agricultural university, 2014. (in Chinese)
    [21] 刘俊平. 无致病力hrp-突变体防治番茄青枯病作用研究 [D]. 北京: 中国农业科学院, 2006.

    LIU J P. Study on the control effect against tomato bacterial wilt with avirulent hrp- mutants [D]. Beijing: Chinese academy of agricultural sciences, 2006. (in Chinese)
    [22] MILLING A, BABUJEE L, ALLEN C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants [J]. PLoS One, 2011, 6(1): e15853. doi: 10.1371/journal.pone.0015853
    [23] CHEN D, LI C, WU K, et al. A PhcA- marker-free mutant of Ralstonia Solanacearum as potential biocontrol agent of tomato bacterial wilt [J]. Biological Control, 2015, 80: 96−102. doi: 10.1016/j.biocontrol.2014.09.005
    [24] CIARDI J A, TIEMAN D M, LUND S T, et al. Response to Xanthomonas campestris pv. Vesicatoria in tomato involves regulation of ethylene receptor gene expression [J]. Plant Physiology, 2000, 123(1): 81−92. doi: 10.1104/pp.123.1.81
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  194
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-01-21
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回