• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基营养型芽孢杆菌Z21发酵条件优化及抑菌活性分析

江丹霞 武少兰 杨国辉 詹艺舒 罗小芳 周天峰 刘培培 杨成龙 江玉姬

江丹霞,武少兰,杨国辉,等. 甲基营养型芽孢杆菌Z21发酵条件优化及抑菌活性分析 [J]. 福建农业学报,2022,37(1):103−113 doi: 10.19303/j.issn.1008-0384.2022.01.014
引用本文: 江丹霞,武少兰,杨国辉,等. 甲基营养型芽孢杆菌Z21发酵条件优化及抑菌活性分析 [J]. 福建农业学报,2022,37(1):103−113 doi: 10.19303/j.issn.1008-0384.2022.01.014
JIANG D X, WU S L, YANG G H, et al. Fermentation Optimization and Antifungal Activity of Bacillus methylotrophicus Z21 [J]. Fujian Journal of Agricultural Sciences,2022,37(1):103−113 doi: 10.19303/j.issn.1008-0384.2022.01.014
Citation: JIANG D X, WU S L, YANG G H, et al. Fermentation Optimization and Antifungal Activity of Bacillus methylotrophicus Z21 [J]. Fujian Journal of Agricultural Sciences,2022,37(1):103−113 doi: 10.19303/j.issn.1008-0384.2022.01.014

甲基营养型芽孢杆菌Z21发酵条件优化及抑菌活性分析

doi: 10.19303/j.issn.1008-0384.2022.01.014
基金项目: 福建农林大学科技创新基金(KF2015050、KFA17204A)
详细信息
    作者简介:

    江丹霞(1999−),女,硕士,研究方向:食品安全控制与微生物学(E-mail:1181200185@qq.com

    通讯作者:

    杨成龙(1964−),男,教授级高级工程师,研究方向:发酵工艺学(E-mail:yclmail@126.com

    江玉姬(1965−),女,博士,教授,研究方向:食品微生物(E-mail:jyj1209@163.com

  • 中图分类号: TS 201.3

Fermentation Optimization and Antifungal Activity of Bacillus methylotrophicus Z21

  • 摘要:   目的  芽孢杆菌Z21发酵液对黑曲霉、康氏木霉等真菌有拮抗性,探究Z21菌抑菌活性物质稳定性及抑菌活性分析,可为开发天然防腐剂提供参考。  方法  通过牛津杯法,以康氏木霉为指示菌,优化Z21菌产抑菌活性物质的发酵条件,探讨不同温度、紫外线、pH、作用时间、酶和金属离子对Z21菌抑菌活性物质稳定性的影响;测定硫酸铵沉淀法提取的粗提物MIC及对康氏木霉孢子萌发和菌丝生长的影响。  结果  当发酵条件为500 mL锥形瓶装液体培养基150 mL、接种量3%、发酵时间60 h、发酵温度30 ℃、转速140 r·min1时,150 μL无菌发酵液对康氏木霉菌丝生长的抑制率为72%左右,粗提物的MIC为25 mg·mL−1。在紫外光波长为260 nm和280 nm时,经25 mg·mL−1的粗取物处理后的康氏木霉菌液紫外吸光值升高,说明菌丝的核酸和蛋白质有泄露。Z21菌发酵液耐热,耐酸、碱,对紫外线、许多酶和金属离子不敏感。扫描电镜观察显示:Z21菌处理后的康氏木霉菌丝比较纤细,不分化孢子梗。  结论  Z21菌发酵液对康氏木霉的生长和繁殖均受到抑制,抑菌活性物质稳定性良好。
  • 图  1  不同发酵条件对Z21菌无菌发酵液抑菌活性的影响

    注:图中不同小写字母表示不同处理间差异显著(P<0.05)。下同。

    Figure  1.  Effects of fermentation conditions on antifungal activity of sterile Z21 fermentation broth

    Note: Data with different lowercase letters indicate significant difference between treatments (P<0.05). Same for the following.

    图  2  Z21菌发酵液抑菌活性稳定性

    Figure  2.  Stability of antibacterial activity of Z21 fermentation broth

    图  3  受Z21菌影响的康氏木霉菌丝表面扫描电镜图

    注:A:对照组,B:处理组。放大倍数从左到右依次为×800、×2 500、×5 000。

    Figure  3.  SEM images of T. koningii hyphae surface as affected by Z21

    Note: A: Control; B: Treatment group. Magnifications are 800x, 2 500x, and 5 000x from left to right.

    图  4  Z21菌发酵液粗提物对康氏木霉菌丝细胞内蛋白质泄露的影响

    注:CK:对照组,CL:处理组。下同。

    Figure  4.  Effect of crude Z21 fermentation broth extract on protein leakage of T. koningii hyphae

    Note: CK: Control; CL: Treatment group. Same for the following.

    图  5  Z21菌发酵液粗提物对康氏木霉菌丝细胞内核酸泄露的影响

    Figure  5.  Effect of crude Z21 fermentation broth extract on nucleic acid leakage of T. koningii hyphae

    表  1  正交试验的因素及水平设计

    Table  1.   Factors and levels of orthogonal test

    水平
    Levels
    A装液量
    Liquid volume/mL
    B接种量
    Inoculation amount/%
    C发酵时间
    Fermentation time/h
    D发酵温度
    Fermentation temperature/℃
    E转速
    Revolution speed/(r·min−1
    110023630120
    215034832140
    320046035160
    下载: 导出CSV

    表  2  Z21菌发酵条件正交试验结果

    Table  2.   Orthogonal test results on Z21 fermentation conditions

    试验
    Test
    A装液量
    Liquid
    volume/mL
    B接种量
    Inoculation
    amount/%
    C发酵时间
    Fermentation
    time/h
    D发酵温度
    Fermentation
    temperature/℃
    E转速
    Revolution speed/
    (r·min−1)
    F空白
    Blank
    抑制率
    Inhibition
    rate/%
    1 100 2 36 30 120 1 52.56
    2 100 3 48 32 140 2 40.41
    3 100 4 60 35 160 3 23.86
    4 150 2 36 32 140 3 60.85
    5 150 3 48 35 160 1 39.67
    6 150 4 60 30 120 2 55.73
    7 200 2 48 30 160 2 13.13
    8 200 3 60 32 120 3 56.54
    9 200 4 36 35 140 1 34.92
    10 100 2 60 35 140 2 19.19
    11 100 3 36 30 160 3 13.25
    12 100 4 48 32 120 1 57.8
    13 150 2 48 35 120 3 25.45
    14 150 3 60 30 140 1 70.61
    15 150 4 36 32 160 2 15.08
    16 200 2 60 32 160 1 16.67
    17 200 3 36 35 120 2 22.11
    18 200 4 48 30 140 3 51.75
    k1 34.512 31.308 33.128 42.838 45.032 45.372
    k2 44.565 40.432 38.035 41.225 46.288 27.608
    k3 32.52 39.857 40.433 27.533 20.277 38.617
    R 12.045 9.124 7.305 15.305 26.011 17.764
    主次因素
    Secondary factors
    E>D>A>B>C
    最优方案
    Optimal alterative
    A2B2C3D1E2
    下载: 导出CSV

    表  3  正交试验结果方差分析

    Table  3.   ANOVA analysis on orthogonal test results

    方差来源
    Variance Source
    平方和
    Squares
    自由度
    Freedom
    均方
    Mean
    square
    F
    F value
    P
    P value
    校正模型 Calibration model4410.50410441.0501.7080.246
    A500.2372250.1180.9680.425
    B313.2802156.6400.6070.572
    C166.381283.1900.3220.735
    D848.6152424.3081.6430.260
    E2581.99221290.9964.9990.045*
    残差 Residuals1807.8677258.267
    总和 Sum31126.00418
    下载: 导出CSV

    表  4  Z21菌发酵液粗提物抑制康氏木霉孢子萌发的MIC

    Table  4.   MIC of crude Z21 fermentation extract on T. koningii spore germination

    不同质量浓度提取物的抑制效果
    Antifungal effects of extracts of different concentrations/(mg·mL−1)
    01.563.1256.2512.525501002004008001000
    +++++
    注:“+”表示长菌,无抑制效果;“−”表示不长菌,有抑制效果。
    Note: “+” means growth of bacteria with no inhibitory effect; “−” means inhibition on bacterial growth.
    下载: 导出CSV
  • [1] NAETS M, VAN DAEL M, VANSTREELS E, et al. To disinfect or not to disinfect in postharvest research on the fungal decay of apple? [J]. International Journal of Food Microbiology, 2018, 266: 190−199. doi: 10.1016/j.ijfoodmicro.2017.12.003
    [2] WINTER G, PEREG L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance [J]. European Journal of Soil Science, 2019: ejss.12813. doi: 10.1111/ejss.12813
    [3] 裴鹏钢, 熊科, 叶宏, 等. 粮油食品中微生物和真菌毒素污染预测模型研究进展 [J]. 中国粮油学报, 2020, 35(2):179−187. doi: 10.3969/j.issn.1003-0174.2020.02.030

    PEI P G, XIONG K, YE H, et al. Advances in prediction models of microbial and mycotoxin contamination in the grain and oil foods [J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(2): 179−187.(in Chinese) doi: 10.3969/j.issn.1003-0174.2020.02.030
    [4] 邓义佳, 王润东, 王雅玲, 等. 鱼干制品中真菌及次生代谢产物污染现状 [J]. 卫生研究, 2019, 48(4):677−680.

    DENG Y J, WANG R D, WANG Y L, et al. Status of fungal and secondary metabolite contamination in dried fish products [J]. Journal of Hygiene Research, 2019, 48(4): 677−680.(in Chinese)
    [5] HU W Q, GAO Q X, HAMADA M S, et al. Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum [J]. Phytopathology, 2014, 104(12): 1289−1297. doi: 10.1094/PHYTO-02-14-0049-R
    [6] ESKOLA M, KOS G, ELLIOTT C T, et al. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25% [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2773−2789. doi: 10.1080/10408398.2019.1658570
    [7] 刁益韶, 贾萌, 朱璐瑶. 食品防腐剂的使用现状及安全性分析 [J]. 河北化工, 2012, 35(10):63−66.

    DIAO Y S, JIA M, ZHU L Y. Application status of food preservatives and their security analysis [J]. Hebei Chemical Industry, 2012, 35(10): 63−66.(in Chinese)
    [8] 任建雯, 罗云艳, 冯印印, 等. 贝莱斯芽孢杆菌RJW-5-5的分离鉴定及细菌素、抗菌肽基因簇挖掘 [J]. 微生物学通报, 2021, 48(3):742−754.

    REN J W, LUO Y Y, FENG Y Y, et al. Isolation and identification of Bacillus velezensis RJW-5-5 and gene cluster·mining of bacteriocin and RiPPs [J]. Microbiology China, 2021, 48(3): 742−754.(in Chinese)
    [9] CHEN M C, WANG J P, ZHU Y J, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349 [J]. Journal of Applied Microbiology, 2019, 126(5): 1519−1529. doi: 10.1111/jam.14213
    [10] GUO Q G, DONG W X, LI S Z, et al. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease [J]. Microbiological Research, 2014, 169(7/8): 533−540.
    [11] 许琳琳. 枯草芽孢杆菌环脂肽对海藻酸钠成膜性能以及蓝莓保鲜效果影响研究[D]. 北京: 北京林业大学, 2020

    XU L L. Effects of cyclolipopeptides produced by Bacillus subtilis on the film-forming properties of sodium alginate and the fresh-keeping effect of blueberries[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
    [12] ANANDARAJ B, VELLAICHAMY A, KACHMAN M, et al. Co-production of two new peptide antibiotics by a bacterial isolate Paenibacillus alvei NP75 [J]. Biochemical and Biophysical Research Communications, 2009, 379(2): 179−185. doi: 10.1016/j.bbrc.2008.12.007
    [13] 陈雅平. 生防菌海芋内生菌TNX-1的分离鉴定、发酵条件及发酵液抑菌物质研究[D]. 福州: 福建农林大学, 2012.

    CHEN Y P. Isolation and identification, fermentation conditions of Alocasia endophyte TNX-1 and study on antifungal substances of the fermentation liquid[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012.
    [14] 李培中, 许丽, 何惠霞, 等. 1株水蜜桃采后病害拮抗细菌的鉴定及抑菌作用 [J]. 食品科学, 2019(2):102−109. doi: 10.7506/spkx1002-6630-20171226-323

    LI P Z, XU L, HE H X, et al. Identification and antifungal activity of an antagonistic strain against postharvest disease in honey peach [J]. Food Science, 2019(2): 102−109.(in Chinese) doi: 10.7506/spkx1002-6630-20171226-323
    [15] 张楠楠. 产脂肽枯草芽孢杆菌的发酵优化以及在面包中的应用[D]. 无锡: 江南大学, 2017.

    ZHANG N N. Study on the production optimization of lipopepetide from Bacillus subtilis and application in bread[D]. Wuxi: Jiangnan University, 2017.
    [16] HMIDET N, JEMIL N, NASRI M. Simultaneous production of alkaline amylase and biosurfactant by Bacillus methylotrophicus DCS1: Application as detergent additive [J]. Biodegradation, 2019, 30(4): 247−258. doi: 10.1007/s10532-018-9847-8
    [17] SONTAKKE S, CADENAS M B, MAGGI R G, et al. Use of broad range16S rDNA PCR in clinical microbiology [J]. Journal of Microbiological Methods, 2009, 76(3): 217−225. doi: 10.1016/j.mimet.2008.11.002
    [18] 李方舟. 普洱茶树叶片内生细菌Bacillus velezensis FZ06的基因组测序及抗菌活性代谢产物研究[D]. 广州: 华南理工大学, 2020

    LI F Z. Study on genome sequencing and antimicrobial metabolites produced by endophytic bacterium Bacillus velezensis FZ06 isolated from leaves of Camellia assamica[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
    [19] 毛馨, 张桂真, 曲劲尧, 等. 芽孢杆菌中新型非核糖体肽类抗菌活性物质的发掘、分离鉴定及特性研究 [J]. 中国畜牧兽医, 2020, 47(12):4093−4102.

    MAO X, ZHANG G Z, QU J Y, et al. Discovery, isolation, identification and characterization of novel non-ribosomal peptide antibacterial active substances in Bacillus [J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(12): 4093−4102.(in Chinese)
    [20] MADHAIYAN M, POONGUZHALI S, KWON S W, et al. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 10): 2490−2495.
    [21] HE C N, YE W Q, ZHU Y Y, et al. Antifungal activity of volatile organic compounds produced by Bacillus methylotrophicus and Bacillus thuringiensis against five common spoilage fungi on loquats [J]. Molecules (Basel, Switzerland), 2020, 25(15): 3360. doi: 10.3390/molecules25153360
    [22] 程敏, 顾钢, 肖顺, 等. 芽孢杆菌(Bacillus)FJSC01对烟草土传病原菌的拮抗作用及其鉴定 [J]. 福建农林大学学报(自然科学版), 2021, 50(2):164−169.

    CHENG M, GU G, XIAO S, et al. Antagonistic effects of Bacillus FJSC01 on soilborne pathogens of tobacco and its identification [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(2): 164−169.(in Chinese)
    [23] 张可可, 席宇, 吴少雄, 等. 甲基营养型芽孢杆菌的分离鉴定及其广谱抗菌性能初步研究 [J]. 中国调味品, 2019, 44(10):31−34,45. doi: 10.3969/j.issn.1000-9973.2019.10.007

    ZHANG K K, XI Y, WU S X, et al. Isolation and identification of Bacillus methylotrophicus and preliminary study on its broad-spectrum antibacterial activity [J]. China Condiment, 2019, 44(10): 31−34,45.(in Chinese) doi: 10.3969/j.issn.1000-9973.2019.10.007
    [24] 吴燕燕, 张岩, 李来好, 等. 甲基营养型芽孢杆菌抗菌肽对罗非鱼片保鲜效果的研究 [J]. 食品工业科技, 2013, 34(2):315−318.

    WU Y Y, ZHANG Y, LI L H, et al. Study on fresh-keeping effect of antimicrobial peptides from Bacillus methylotrophilus in Tilapia fillet preservation [J]. Science and Technology of Food Industry, 2013, 34(2): 315−318.(in Chinese)
    [25] 尹向田, 杨阳. 甲基营养型芽孢杆菌GSBM05产抗菌活性物质发酵条件优化 [J]. 江苏农业科学, 2018(20):89−93.

    YIN X T, YANG Y. Optimization of fermentation conditions of antibacterial substance produced by Bacillus methylotrophicus GSBM05 [J]. Jiangsu Agricultural Sciences, 2018(20): 89−93.(in Chinese)
    [26] 魏新燕, 黄媛媛, 黄亚丽, 等. 甲基营养型芽孢杆菌BH21对葡萄灰霉病菌的拮抗作用 [J]. 中国农业科学, 2018, 51(5):883−892.

    WEI X Y, HUANG Y Y, HUANG Y L, et al. Antagonism of Bacillus methylotrophicus strain BH21 to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(5): 883−892.(in Chinese)
    [27] 詹艺舒, 李婕, 褚秀丹, 等. 一株真菌拮抗细菌Z21的筛选与鉴定及其发酵条件优化 [J]. 微生物学通报, 2020, 47(5):1503−1514.

    ZHAN Y S, LI J, CHU X D, et al. Screen, identification and fermentation optimization of an antifungal bacterium Z21 [J]. Microbiology China, 2020, 47(5): 1503−1514.(in Chinese)
    [28] 李恩琛, 张文军, 张树武, 等. 生防细菌复配对苹果主要病原真菌抑菌活性筛选及其稳定性 [J]. 西北农业学报, 2020, 29(8):1270−1277.

    LI E C, ZHANG W J, ZHANG S W, et al. Screening of antimicrobial activities and stability of biocontrol bacteria combination against apple's main pathogenic fungi [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(8): 1270−1277.(in Chinese)
    [29] 徐润. 钝顶螺旋藻藻蓝蛋白储存稳定性研究[D]. 天津: 天津科技大学, 2017.

    XU R. Research of the storage stability of phycocyanin from Spirulina platensis[D]. Tianjin: Tianjin University of Science & Technology, 2017.
    [30] 王青华, 唐旭, 孙晓晖, 等. 深海贝莱斯芽孢杆菌DH82的抑菌活性物质初步分离纯化及其抑菌谱检测 [J]. 应用海洋学学报, 2020, 39(1):20−26.

    WANG Q H, TANG X, SUN X H, et al. Purification of antimicrobial substance produced by deep sea Bacillus velezensis strain DH82 and its inhibition spectrum [J]. Journal of Applied Oceanography, 2020, 39(1): 20−26.(in Chinese)
    [31] 文娜. 拮抗轮枝镰刀菌的放线菌筛选及其活性代谢产物的初步研究[D]. 兰州: 西北师范大学, 2020.

    WEN N. Screening of actinomycetes resistant to Fusarium verticillioide and preliminary study on their active metabolites[D]. Lanzhou: Northwest Normal University, 2020.
    [32] 陶阳. Bacillus subtilis fmbJ抗菌脂肽对Rhizopus stolonifer作用机理研究[D]. 南京: 南京农业大学, 2010.

    TAO Y. Antifungal mechanism of antimicrobial lipopeptide produced by Bacillus subtilis fmbJ against Rhizopus stolonifer[D]. Nanjing: Nanjing Agricultural University, 2010.
    [33] 梁光杰, 车程川, 巩志金, 等. 一株海洋链霉菌发酵条件的优化及其抑菌活性物质的研究 [J]. 中国酿造, 2018, 37(12):101−105.

    LIANG G J, CHE C C, GONG Z J, et al. Optimization of fermentation conditions of a marine Streptomyces and its antibacterial activity substances [J]. China Brewing, 2018, 37(12): 101−105.(in Chinese)
    [34] 张薇. 烟草青枯菌拮抗放线菌的筛选、鉴定及发酵条件研究[D]. 泰安: 山东农业大学, 2009.

    ZHANG W. Screening and identifying of antagonistic actinomycetes against Ralstonia solancearum and optimizing of fermentation conditions[D]. Taian: Shandong Agricultural University, 2009.
    [35] 陈倩倩. 烟草根际土壤拮抗放线菌SA74菌株活性代谢产物的研究[D]. 洛阳: 河南科技大学, 2019.

    CHEN Q Q. Study on active metabolite of antagonistic actinomycete SA74 in rhizosphere soil of tobacco[D]. Luoyang: Henan University of Science and Technology, 2019.
    [36] 李雨虹, 耿鹏, 刘建民, 等. 重组枯草芽孢杆菌全细胞催化合成钙二醇的初步研究 [J]. 食品与发酵工业, 2021, 47(12):17−22.

    LI Y H, GENG P, LIU J M, et al. Whole-cell biosynthesis of 25-hydroxy vitamin D3 by recombinant Bacillus subtilis [J]. Food and Fermentation Industries, 2021, 47(12): 17−22.(in Chinese)
    [37] MORA I, CABREFIGA J, MONTESINOS E. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria [J]. PLoS One, 2015, 10(5): e0127738. doi: 10.1371/journal.pone.0127738
    [38] STEIN T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions [J]. Molecular Microbiology, 2005, 56(4): 845−857. doi: 10.1111/j.1365-2958.2005.04587.x
    [39] 武利勤, 顾海科, 王青, 等. 石斛内生甲基营养芽胞杆菌的拮抗和促生作用研究 [J]. 生物技术通报, 2016, 32(8):200−206.

    WU L Q, GU H K, WANG Q, et al. Antagonistic efficacy and growth-promoting effect of Bacillus methylotrophicus isolated from Dendrobium huoshanense [J]. Biotechnology Bulletin, 2016, 32(8): 200−206.(in Chinese)
    [40] 采俊香, 李月梅. 抱茎苦荬菜内生甲基营养型芽孢杆菌G-5抗菌蛋白抗真菌特性研究 [J]. 中国植保导刊, 2017, 37(4):20−26. doi: 10.3969/j.issn.1672-6820.2017.04.003

    CAI J X, LI Y M. Studies on antifungal characteristics of endophytic Bacillus methylotrophicus G-5 from Ixeris sonchifolia hance [J]. China Plant Protection, 2017, 37(4): 20−26.(in Chinese) doi: 10.3969/j.issn.1672-6820.2017.04.003
    [41] ZHANG Q X, ZHANG Y, SHAN H H, et al. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10 [J]. Environmental Science and Pollution Research International, 2017, 24(32): 25000−25009. doi: 10.1007/s11356-017-0179-8
    [42] 姜威, 马银鹏, 陆佳, 等. 生防甲基营养型芽孢杆菌Hg18抗菌蛋白的分离纯化及性质研究 [J]. 化学与生物工程, 2021, 38(6):35−39. doi: 10.3969/j.issn.1672-5425.2021.06.007

    JIANG W, MA Y P, LU J, et al. Separation, purification and characteristics of antibacterial protein produced by biocontrol Bacillus methylotrophicus Hg18 [J]. Chemistry & Bioengineering, 2021, 38(6): 35−39.(in Chinese) doi: 10.3969/j.issn.1672-5425.2021.06.007
    [43] LEE M H, LEE J, NAM Y D, et al. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food [J]. International Journal of Food Microbiology, 2016, 221: 12−18. doi: 10.1016/j.ijfoodmicro.2015.12.010
    [44] 吴艳清, 王游游, 蒋继志, 等. 拮抗菌YQ5对致病疫霉的抑制作用及其抑菌稳定性研究 [J]. 中国植保导刊, 2018, 38(10):5−12. doi: 10.3969/j.issn.1672-6820.2018.10.001

    WU Y Q, WANG Y Y, JIANG J Z, et al. Inhibition effect of antagonistic bacteria YQ5 against Phytophthora infestans and its stability [J]. China Plant Protection, 2018, 38(10): 5−12.(in Chinese) doi: 10.3969/j.issn.1672-6820.2018.10.001
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  205
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 修回日期:  2022-01-08
  • 网络出版日期:  2022-02-07
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回