• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物棉子糖家族寡糖(RFOs)在种子活力及非生物胁迫中的生物学功能研究进展

余箬芊 王福祥 郑燕梅 林悦龙 魏毅东 蔡秋华 周元昌 张建福

余箬芊,王福祥,郑燕梅,等. 植物棉子糖家族寡糖(RFOs)在种子活力及非生物胁迫中的生物学功能研究进展 [J]. 福建农业学报,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015
引用本文: 余箬芊,王福祥,郑燕梅,等. 植物棉子糖家族寡糖(RFOs)在种子活力及非生物胁迫中的生物学功能研究进展 [J]. 福建农业学报,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015
YU R Q, WANG F X, ZHENG Y M, et al. Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015
Citation: YU R Q, WANG F X, ZHENG Y M, et al. Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015

植物棉子糖家族寡糖(RFOs)在种子活力及非生物胁迫中的生物学功能研究进展

doi: 10.19303/j.issn.1008-0384.2022.01.015
基金项目: 国家水稻产业技术体系建设专项(CARS-01);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021001);福建省科技重大专项(2020NZ08016);福建省科技计划公益类专项(2020R1023008)
详细信息
    作者简介:

    余箬芊(1997−),女,硕士研究生,主要从事水稻分子生物学研究(E-mail:807249496@qq.com

    通讯作者:

    周元昌(1963−),男,博士,教授,主要从事水稻遗传育种研究(E-mail:zwy_2002@163.com

    张建福(1971−),男,博士,研究员,主要从事水稻分子育种研究(E-mail:jianfzhang@163.com

  • 中图分类号: Q 946

Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress

  • 摘要: 植物生长发育遭受的非生物胁迫及其种子储藏过程中活力的丧失,是农业生产上难以解决的两大问题。棉子糖家族系列寡糖(RFOs)是植物中广泛存在的可溶性低聚糖,其代谢产物一方面可通过多种途径参与植物抵抗非生物胁迫,另一方面可参与调控种子活力,但目前RFOs在不同胁迫中的调控途径和分子机制尚不明确。因此,解析RFOs的生物学功能,对于利用该通路改善作物经济性状、提高作物产量具有重要的现实意义和应用价值。本文主要阐述了RFOs的合成与分解代谢通路,总结近年来RFOs在种子活力、非生物胁迫特别是干旱胁迫及冷胁迫中的研究进展,讨论RFOs代谢作用机制方面研究存在的不足,并展望RFOs代谢未来重点研究方向。
  • 图  1  棉子糖家族系列寡糖代谢通路[13-14]

    Figure  1.  Metabolism pathway of RFOs[13-14]

    图  2  棉子糖家族系列寡糖在植物中的生理功能[14]

    Figure  2.  Presumptive physiological functions of RFOs in plant[14]

  • [1] CASTILLO E M, DE LUMEN B O, REYES P S, et al. Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes [J]. Journal of Agricultural and Food Chemistry, 1990, 38(2): 351−355. doi: 10.1021/jf00092a003
    [2] LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice [J]. Planta, 2011, 234(5): 1007−1018. doi: 10.1007/s00425-011-1458-0
    [3] DOS SANTOS T B, BUDZINSKI I G F, MARUR C J, et al. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses [J]. Plant Physiology and Biochemistry, 2011, 49(4): 441−448. doi: 10.1016/j.plaphy.2011.01.023
    [4] TAJI T, OHSUMI C, IUCHI S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana [J]. The Plant Journal, 2002, 29(4): 417−426. doi: 10.1046/j.0960-7412.2001.01227.x
    [5] HORBOWICZ M, OBENDORF R L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—review and survey [J]. Seed Science Research, 1994, 4(4): 385−405. doi: 10.1017/S0960258500002440
    [6] SENGUPTA S, MUKHERJEE S, PARWEEN S, et al. Galactinol synthase across evolutionary diverse taxa: Functional preference for higher plants? [J]. FEBS Letters, 2012, 586(10): 1488−1496. doi: 10.1016/j.febslet.2012.04.003
    [7] LOEWUS F A, MURTHY P P N. Myo-Inositol metabolism in plants [J]. Plant Science, 2000, 150(1): 1−19. doi: 10.1016/S0168-9452(99)00150-8
    [8] JANEČEK S, LANTA V, KLIMEŠOVÁ J, et al. Effect of abandonment and plant classification on carbohydrate reserves of meadow plants [J]. Plant Biology (Stuttgart, Germany), 2011, 13(2): 243−251. doi: 10.1111/j.1438-8677.2010.00352.x
    [9] KUO T M, VANMIDDLESWORTH J F, WOLF W J. Content of raffinose oligosaccharides and sucrose in various plant seeds [J]. Journal of Agricultural and Food Chemistry, 1988, 36(1): 32−36. doi: 10.1021/jf00079a008
    [10] IFTIME D, HANNAH M A, PETERBAUER T, et al. Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean [J]. Plant Science, 2011, 180(1): 24−30. doi: 10.1016/j.plantsci.2010.07.012
    [11] BLÖCHL A, MARCH G G D, SOURDIOUX M, et al. Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L. ) [J]. Plant Science, 2005, 168(4): 1075−1082. doi: 10.1016/j.plantsci.2004.12.004
    [12] PETERS S, KELLER F. Frost tolerance in excised leaves of the common bugle (Ajuga reptans L. ) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs) [J]. Plant, Cell & Environment, 2009, 32(8): 1099−1107.
    [13] 从青, 程龙军, 杨宁. 植物肌醇半乳糖苷合酶的生理功能和调控机制 [J]. 中国生物化学与分子生物学报, 2019, 35(11):1193−1200.

    CONG Q, CHENG L J, YANG N. Physiological function and regulation mechanism of galactinol synthase in plants [J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(11): 1193−1200.(in Chinese)
    [14] 李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究[D]. 杨凌: 西北农林科技大学, 2017.

    LI T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
    [15] ZHOU M L, ZHANG Q, ZHOU M, et al. Genome-wide identification of genes involved in raffinose metabolism in Maize [J]. Glycobiology, 2012, 22(12): 1775−1785. doi: 10.1093/glycob/cws121
    [16] ZHOU T, ZHANG R, GUO S D. Molecular cloning and characterization of GhGolS1, a novel gene encoding galactinol synthase from cotton (Gossypium hirsutum) [J]. Plant Molecular Biology Reporter, 2012, 30(3): 699−709. doi: 10.1007/s11105-011-0375-5
    [17] BLÖCHL A, PETERBAUER T, HOFMANN J, et al. Enzymatic breakdown of raffinose oligosaccharides in pea seeds [J]. Planta, 2008, 228(1): 99−110. doi: 10.1007/s00425-008-0722-4
    [18] CARMI N, ZHANG G, PETREIKOV M, et al. Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: Similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases [J]. The Plant Journal, 2003, 33(1): 97−106. doi: 10.1046/j.1365-313X.2003.01609.x
    [19] HUA B, ZHANG M Y, ZHANG J J, et al. CsAGA1 and CsAGA2 mediate RFO hydrolysis in partially distinct manner in cucumber fruits [J]. International Journal of Molecular Sciences, 2021, 22(24): 13285. doi: 10.3390/ijms222413285
    [20] ZHANG Y M, LI D, DIRK L M A, et al. ZmAGA1 hydrolyzes RFOs late during the lag phase of seed germination, shifting sugar metabolism toward seed germination over seed aging tolerance [J]. Journal of Agricultural and Food Chemistry, 2021, 69(39): 11606−11615. doi: 10.1021/acs.jafc.1c03677
    [21] LEPRINCE O, PELLIZZARO A, BERRIRI S, et al. Late seed maturation: Drying without dying [J]. Journal of Experimental Botany, 2017, 68(4): 827−841.
    [22] SMITH S E, FAIRBANKS D J. Effects of pollination method on strain cross yield in lucerne [J]. Plant Breeding, 1989, 102(1): 79−82. doi: 10.1111/j.1439-0523.1989.tb00318.x
    [23] LOWELL C A, KUO T M. Oligosaccharide metabolism and accumulation in developing soybean seeds [J]. Crop Science, 1989, 29(2): 459. doi: 10.2135/cropsci1989.0011183X002900020044x
    [24] CLERKX E J M, EL-LITHY M E, VIERLING E, et al. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and shakdara, using a new recombinant inbred line population [J]. Plant Physiology, 2004, 135(1): 432−443. doi: 10.1104/pp.103.036814
    [25] SATTLER S E, GILLILAND L U, MAGALLANES-LUNDBACK M, et al. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination [J]. The Plant Cell, 2004, 16(6): 1419−1432. doi: 10.1105/tpc.021360
    [26] KALEMBA E M, PUKACKA A. Possible roles of LEA proteins and sHSPs in seed protection: A short review [J]. Biological Letters, 2007, 44(1): 3−16.
    [27] KOSTER K L, LEOPOLD A C. Sugars and desiccation tolerance in seeds [J]. Plant Physiology, 1988, 88(3): 829−832. doi: 10.1104/pp.88.3.829
    [28] ZHAO T Y, MARTIN D, MEELEY R B, et al. Expression of the maize GALACTINOL SYNTHASE gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells [J]. Physiologia Plantarum, 2004, 121(4): 647−655. doi: 10.1111/j.1399-3054.2004.00368.x
    [29] JING Y, LANG S R, WANG D M, et al. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds [J]. Journal of Plant Physiology, 2018, 230: 109−121. doi: 10.1016/j.jplph.2018.10.011
    [30] LI T, ZHANG Y M, WANG D, et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana [J]. Molecular Plant, 2017, 10(12): 1540−1555. doi: 10.1016/j.molp.2017.10.014
    [31] VANDECASTEELE C, TEULAT-MERAH B, MORÈRE-LE PAVEN M C, et al. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula [J]. Plant, Cell & Environment, 2011, 34(9): 1473−1487.
    [32] LI X, ZHUO J J, JING Y, et al. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development [J]. Journal of Plant Physiology, 2011, 168(15): 1761−1770. doi: 10.1016/j.jplph.2011.04.006
    [33] BLACKIG M, CORBINEAU F, GRZESIKIT M, et al. Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance [J]. Journal of Experimental Botany, 1996, 47(2): 161−169. doi: 10.1093/jxb/47.2.161
    [34] DE SOUZA VIDIGAL D, WILLEMS L, VAN ARKEL J, et al. Galactinol as marker for seed longevity [J]. Plant Science, 2016, 246: 112−118. doi: 10.1016/j.plantsci.2016.02.015
    [35] GANGL R, TENHAKEN R. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark [J]. Frontiers in Plant Science, 2016, 7: 1115.
    [36] ARUNRAJ R, SKORI L, KUMAR A, et al. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinum [J]. Plant Signaling & Behavior, 2020, 15(8): 1709707.
    [37] DIERKING E C, BILYEU K D. Raffinose and stachyose metabolism are not required for efficient soybean seed germination [J]. Journal of Plant Physiology, 2009, 166(12): 1329−1335. doi: 10.1016/j.jplph.2009.01.008
    [38] JOSHI J, HASNAIN G, LOGUE T, et al. A core metabolome response of maize leaves subjected to long-duration abiotic stresses [J]. Metabolites, 2021, 11(11): 797. doi: 10.3390/metabo11110797
    [39] GUO Q Q, LI X, NIU L, et al. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress [J]. Plant Physiology, 2021, 186(1): 677−695. doi: 10.1093/plphys/kiab050
    [40] LEE C, CHUNG C T, HONG W J, et al. Transcriptional changes in the developing rice seeds under salt stress suggest targets for manipulating seed quality [J]. Frontiers in Plant Science, 2021, 12: 748273. doi: 10.3389/fpls.2021.748273
    [41] MA S, LV J G, LI X, et al. Galactinol synthase gene 4 (CsGolS4) increases cold and drought tolerance in Cucumis sativus L. by inducing RFO accumulation and ROS scavenging [J]. Environmental and Experimental Botany, 2021, 185: 104406. doi: 10.1016/j.envexpbot.2021.104406
    [42] CACELA C, HINCHA D K. Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, 1758(5): 680−691. doi: 10.1016/j.bbamem.2006.04.005
    [43] SCHNEIDER T, KELLER F. Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope [J]. Plant and Cell Physiology, 2009, 50(12): 2174−2182. doi: 10.1093/pcp/pcp151
    [44] NISHIZAWA A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage [J]. Plant Physiology, 2008, 147(3): 1251−1263. doi: 10.1104/pp.108.122465
    [45] PETERS S, MUNDREE S G, THOMSON J A, et al. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit [J]. Journal of Experimental Botany, 2007, 58(8): 1947−1956. doi: 10.1093/jxb/erm056
    [46] EGERT A, EICHER B, KELLER F, et al. Evidence for water deficit-induced mass increases of raffinose family oligosaccharides (RFOs) in the leaves of three Craterostigma resurrection plant species [J]. Frontiers in Physiology, 2015, 6: 206.
    [47] LIANG Y C, WEI G F, NING K, et al. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula [J]. Plant Physiology and Biochemistry, 2021, 165: 19−35. doi: 10.1016/j.plaphy.2021.05.004
    [48] GU L, ZHANG Y M, ZHANG M S, et al. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A [J]. Plant Molecular Biology, 2016, 90(1/2): 157−170.
    [49] 范洁. 木薯肌醇半乳糖苷合成酶基因MeGolS5的抗旱功能研究[D]. 海口: 海南大学, 2015.

    FAN J. Functional characterization involved in drought stress of galactinol synthase gene MeGolS5 from Manihot esculenta crantz[D]. Haikou: Hainan University, 2015. (in Chinese)
    [50] EGERT A, KELLER F, PETERS S. Abiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase (RS5, At5g40390) [J]. BMC Plant Biology, 2013, 13: 218. doi: 10.1186/1471-2229-13-218
    [51] GANGL R, BEHMÜLLER R, TENHAKEN R. Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/ galactosylhydrolase in Arabidopsis thaliana [J ]. Frontiers in Plant Science , 2015 , 6 : 789.
    [52] LI T, ZHANG Y M, LIU Y, et al. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants [J]. Journal of Biological Chemistry, 2020, 295(23): 8064−8077. doi: 10.1074/jbc.RA120.013948
    [53] QIU S, ZHANG J, HE J Q, et al. Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 143(3): 507−516. doi: 10.1007/s11240-020-01936-w
    [54] SALVI P, KAMBLE N U, MAJEE M. Ectopic over-expression of ABA-responsive Chickpea galactinol synthase (CaGolS) gene results in improved tolerance to dehydration stress by modulating ROS scavenging [J]. Environmental and Experimental Botany, 2020, 171: 103957. doi: 10.1016/j.envexpbot.2019.103957
    [55] 刘爱丽, 魏梦园, 黎冬华, 等. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析 [J]. 中国农业科学, 2020, 53(17):3432−3442. doi: 10.3864/j.issn.0578-1752.2020.17.002

    LIU A L, WEI M Y, LI D H, et al. Cloning and function analysis of sesame galactinol synthase gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432−3442.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.17.002
    [56] LÜ J, SUI X L, MA S, et al. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance [J]. Plant Molecular Biology, 2017, 95(1/2): 1−15.
    [57] STRAND, FOYER C H, GUSTAFSSON P, et al. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance [J]. Plant, Cell & Environment, 2003, 26(4): 523−535.
    [58] PENNYCOOKE J C, JONES M L, STUSHNOFF C. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic Petunia [J]. Plant Physiology, 2003, 133(2): 901−909. doi: 10.1104/pp.103.024554
    [59] KELLER I, MÜDSAM C, RODRIGUES C M, et al. Cold-triggered induction of ROS- and raffinose-related metabolism in freezing-sensitive taproot tissue of sugar beet[J]. Frontiers in Plant Science, 2021,DOI: 10.1101/2021.04.12.439442.
    [60] SUN X M, MATUS J T, WONG D C J, et al. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides [J]. Journal of Experimental Botany, 2018, 69(7): 1749−1764. doi: 10.1093/jxb/ery020
    [61] ZHUO C L, WANG T, LU S Y, et al. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses [J]. Physiologia Plantarum, 2013, 149(1): 67−78. doi: 10.1111/ppl.12019
    [62] GILMOUR S J, SEBOLT A M, SALAZAR M P, et al. Overexpression of the Arabidopsis CBF3Transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J]. Plant Physiology, 2000, 124(4): 1854−1865. doi: 10.1104/pp.124.4.1854
    [63] SHIMOSAKA E, OZAWA K. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice [J]. Breeding Science, 2015, 65(5): 363−371. doi: 10.1270/jsbbs.65.363
    [64] LIU Y D, ZHANG L, MENG S D, et al. Expression of galactinol synthase from Ammopiptanthus nanus in tomato improves tolerance to cold stress [J]. Journal of Experimental Botany, 2019, 71(1): 435−449.
    [65] GU H, LU M, ZHANG Z P, et al. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves [J]. Journal of Plant Physiology, 2018, 224/225: 112−120. doi: 10.1016/j.jplph.2018.03.012
    [66] KNAUPP M, MISHRA K B, NEDBAL L, et al. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles [J]. Planta, 2011, 234(3): 477−486. doi: 10.1007/s00425-011-1413-0
    [67] HAN Q H, QI J L, HAO G L, et al. ZmDREB1A regulates RAFFINOSE SYNTHASE controlling raffinose accumulation and plant chilling stress tolerance in maize [J]. Plant and Cell Physiology, 2019, 61(2): 331−341.
    [68] FOYER C H, SHIGEOKA S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology, 2010, 155(1): 93−100.
    [69] CUI L H, BYUN M Y, OH H G, et al. Poaceae type II galactinol synthase 2 from Antarctic flowering plant Deschampsia antarctica and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants [J]. Plant and Cell Physiology, 2019, 61(1): 88−104.
    [70] WANG D H, YAO W, SONG Y, et al. Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza [J]. Journal of Plant Physiology, 2012, 169(18): 1838−1848. doi: 10.1016/j.jplph.2012.07.015
    [71] ZHANG J, SONG G S, MEI Y J, et al. Present status on removal of raff inose family oligosaccharides–a Review [J]. Czech Journal of Food Sciences, 2019, 37(3): 141−154. doi: 10.17221/472/2016-CJFS
    [72] YANG W X, ZHANG Y H, ZHOU X J, et al. Production of a highly protease-resistant fungal α-galactosidase in transgenic maize seeds for simplified feed processing [J]. PLoS One, 2015, 10(6): e0129294. doi: 10.1371/journal.pone.0129294
    [73] LE H, NGUYEN N H, TA D T, et al. CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds [J]. Frontiers in Plant Science, 2020, 11: 612942. doi: 10.3389/fpls.2020.612942
    [74] VALENTINE M F, DE TAR J R, MOOKKAN M, et al. Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed [J]. Frontiers in Plant Science, 2017, 8: 692. doi: 10.3389/fpls.2017.00692
    [75] MAO B Y, TANG H Y, GU J Y, et al. In vitro fermentation of raffinose by the human gut bacteria [J]. Food & Function, 2018, 9(11): 5824−5831.
    [76] PACIFICI S, SONG J, ZHANG C, et al. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations [J]. Nutrients, 2017, 9(3): 304. doi: 10.3390/nu9030304
    [77] 郑建仙, 耿立萍. 功能性低聚糖析论 [J]. 食品与发酵工业, 1997, 23(1):39−46. doi: 10.3321/j.issn:0253-990X.1997.01.008

    ZHENG J X, GENG L P. Analysis of functional oligosaccharides [J]. Food and Fermentation Industries, 1997, 23(1): 39−46.(in Chinese) doi: 10.3321/j.issn:0253-990X.1997.01.008
    [78] SPRENGER N, KELLER F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: The roles of two distinct galactinol synthases [J]. The Plant Journal:for Cell and Molecular Biology, 2000, 21(3): 249−258. doi: 10.1046/j.1365-313x.2000.00671.x
    [79] KELLER I, RODRIGUES C M, NEUHAUS H E, et al. Improved resource allocation and stabilization of yield under abiotic stress [J]. Journal of Plant Physiology, 2021, 257: 153336. doi: 10.1016/j.jplph.2020.153336
    [80] MA S, LI Y X, LI X, et al. Phloem unloading strategies and mechanisms in crop fruits [J]. Journal of Plant Growth Regulation, 2019, 38(2): 494−500. doi: 10.1007/s00344-018-9864-1
    [81] MA S, SUN L, SUI X, et al. Phloem loading in cucumber: Combined symplastic and apoplastic strategies [J]. The Plant Journal, 2019, 98(3): 391−404. doi: 10.1111/tpj.14224
    [82] KIM M S, CHO S M, KANG E Y, et al. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization [J]. Molecular Plant-Microbe Interactions:MPMI, 2008, 21(12): 1643−1653. doi: 10.1094/MPMI-21-12-1643
    [83] WANG Z, ZHU Y, WANG L L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter [J]. Planta, 2009, 230(6): 1155−1166. doi: 10.1007/s00425-009-1014-3
    [84] WU X L, KISHITANI S, ITO Y, et al. Accumulation of raffinose in rice seedlings overexpressing OsWRKY11 in relation to desiccation tolerance [J]. Plant Biotechnology, 2009, 26(4): 431−434. doi: 10.5511/plantbiotechnology.26.431
    [85] CORBESIER L, VINCENT C, JANG S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science, 2007, 316(5827): 1030−1033. doi: 10.1126/science.1141752
    [86] CHEN Q G, PAYYAVULA R S, CHEN L, et al. FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2830−2835. doi: 10.1073/pnas.1719455115
  • 加载中
图(2)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  201
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-02-07
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回